THEORY OF ELASTICITY AND PLASTICITY

Course Code: 13CE 2205

L P C 4 0 3

Course Educational Objectives:

- 1. To impart knowledge of Principal stresses and strains
- 2. To develop analytical skills of solving problems using plain stress and plain strain.
- 3. To impart knowledge of engineering application of plasticity.

Course Outcomes:

- 1. The students shall be able to demonstrate the application of plane stress and plane strain in a given situation.
- 2. The student will demonstrate the ability to analyze the structure using plasticity.
- 3. To impart the knowledge of stress-strain relations for linearly elastic solids, and Torsion.

UNIT-I

Elasticity: Analysis of stress and strain, Definition of stress and strain at a point, Equilibrium and compatibility equations, Transformation of stress and strain at a point

Principal stresses and strains: Stress and strain invariants, hydrostatic and deviator stress strains.

UNIT-II

Plane stress and plane strain: - Simple two dimensional problems in Cartesian and polar co-ordinates, Airy's stress function in rectangular and polar coordinates.

UNIT-III

Stress-strain relations for linearly elastic solids: Generalized Hooke's law. Solution of axi-symmetric problems, stress concentration due to presence of a circular hole, Elementary problems of elasticity in three dimensions.

UNIT-IV

Torsion: St.Venant's approach-Prandtl's approach – Membrane analogy - Torsion of thin walled open and closed sections.

UNIT-V

Plasticity: Physical Assumptions – Yield criteria - Tresca and VonMises criterion of yielding, plastic stress strain relationship, Elastic plastic problems in bending. Some engineering applications of elasticity and plasticity

TEXT BOOKS

- 1. Timoshenko, S. and Goodier J.N. "*Theory of Elasticity*", 2nd Edition, McGraw Hill Book Co, 2001.
- 2. Sadhu Singh, "Theory of Elasticity", 3rd Edition, Khanna Publishers, 2003.

REFERENCES

- 1. Chen W.F. and Han D.J. "*Plasticity for structural Engineers*", 1st Edition, Springer-Verlag, 2000.
- 2. Irving H.Shames and James, M.Pitarresi. "Introduction to Solid Mechanics", 4th Edition, Prentice Hall of India Pvt. Ltd., 2000.
