STRUCTURAL OPTIMIZATION

Course Code: 13CE 2202

Course Educational Objectives:

- 1. To impart the knowledge of problem formulation in structural optimization
- 2. To familiarize the student about various methods of optimization

Course Outcomes:

- 1. Student should be able to form a problem formulation for a given structure
- 2. Student should be able to get optimized structure using classical and modern methods of optimization.
- 3. To impart the students, with the knowledge of Formulation of Structural Optimization problems.
- 4. Formulation of Structural Optimization problems: Design variables Objective function Constraints.
- 5. Classical methods of optimization for multivariable with equality or inequality constraints: solution by method of Lagrange Multiplier Applications in structural engineering, Kuhn-Tucker conditions.

UNIT – I

Formulation of Structural Optimization problems: Design variables - Objective function – constraints.

Classical methods of optimization for multivariable with equality or inequality constraints: solution by method of Lagrange Multiplier -Applications in structural engineering, Kuhn-Tucker conditions.

UNIT – II

Nonlinear Programming: Unconstrained and Constrained Optimization - Direct search and gradient methods- Basic approach of the Penalty function method - Interior penalty function method and Exterior penalty function method – design of three bar truss, space truss, welded beam design

UNIT – III

Genetic Algorithms: – Introduction – basic concept – working principle - Binary coding- Fitness function - Genetic Operators -Application to Two bar pendulum, 3-bar truss, optimum fibre orientation, Genetic Algorithms applications to discrete size

UNIT – IV

Simulated annealing: problem formulation- steps involved in SA-application to RCC retaining wall, and pre-stressed concrete structure design.

UNIT – V

Artificial Neural Networks based approaches for structural optimization problems- Introduction- basic concept of ANN-Architectures and learning methods of NN- Back propagation networks- structural application

TEXT BOOKS

- 1. Rao, S.S. *"Engineering Optimization, Theory and Applications",* 3rd Edition, New Age International publication, New Delhi, 2010.
- 2. Rajasekaran, S. and Vijaya Lakshmi Pai, G.A. "Newral networks, Fuzzy logic, and genetic Algorithms, Synthesis and Application", 1st Edition, PHI, 2003

REFERENCES

- 1. Arora, J.S. "Introduction to Optimum Design", 2nd Edition, McGraw-Hill Book Company, 2000.
- 2. MorrIs A.J., *"Foundations of Structural Optimization A Unified Approach"*, 3rd Edition, John Wiley and Sons, 2003.
