STRUCTURAL DYNAMICS

Course Code: 13CE 2203 L P C 4 0 3

Course Educational Objectives:

1. To create a understanding on application of single degree and multi-degree freedom systems.

2. To impart the knowledge on calculation of mode superposition

Course Outcomes:

- 1. Students acquire the ability to analyze multi-degrees of freedom system for structures.
- 2. The student will demonstrate the ability to analyze the structures for dynamic effects.
- 3. To impart the students, with the knowledge of Single degree of freedom system
- 4. Single degree of freedom system: Natural Vibration, time period, amplitude, various forcing functions, Response to undamped & damped system.

UNIT – I

Single degree of freedom system: Natural Vibration, time period, amplitude, various force

functions, Response to undamped & damped system.

UNIT – II

Single degree of freedom system: Forced vibration, Response to damped & undamped, Response to pulsating force, Support motion (Transmissibility).

UNIT – III

Single degree of freedom system: Coloumb damping, Viscous damped for harmonic vibration & frequency response curve.

UNIT – IV

Multi degree freedom system: Determination of natural frequency, characteristic shapes for undamped system, orthogonality of natural modes and normal coordinates.

UNIT – V

Methods of combining modes: Mode superposition method, Modal truncation errors-Modal Acceleration method, Direct Integration methods, Explicit and Implicit methods.

TEXT BOOKS:

- 1. Chopra A. K., "Dynamics of Structures", 3rd Edition, Pearson edition, 2007.
- 2. Mario Paz, William Leigh., "Structural Dynamics: Theory and Computation", 5th edition, Springer. 2003.

REFERENCES:

- 1. Raymond W. Clough, Joseph Penzien, "Dynamics of Structures", Mc Graw-Hill Book Company.
- 2. W. Weaver, Jr., S. P. Timoshenko, D. H. Young. "Vibration Problems in Engineering", 4th Edition. 2010.
