ADVANCED COMPUTATIONAL METHODS

Course Code: 13BM2101

L P C 4 0 3

Pre-requisites: Fundamental concepts of calculus, ordinary differential equations, and elementary numerical methods

Course Educational Objectives:

To make the student understand

- 1. non-iterative and iterative methods to solve systems of linear equations
- 2. Eigen values and Eigen vectors
- 3. various methods of numerical differentiation and integration
- 4. methods of solution of certain types of partial differential equations

Course Outcomes:

The student will be able to

- 1. use advanced numerical methods in modern scientific computing.
- 2. use numerical methods to interpolate functions and their derivatives.
- 3. solve ordinary and partial differential equations using numerical methods.
- 4. to formulate mathematical models for engineering problems to choose appropriate methods to solve them

UNIT-I

System of linear equations: Gauss elimination method, triangularization method, Cholesky method, Partition method, Error Analysis for Direct Methods.

Iteration Methods: Jacobi Iteration Method, Gauss Seidel Iteration Method, SOR Method.

UNIT-II

Eigen value and Eigen Vectors, Bounds on Eigen values, Jacobi Method for symmetric matrices, givens method for symmetric matrices, householders method, power method.

UNIT-III

Numerical differentiation: Introduction, methods based on undetermined coefficients, optimum choice of step length, extrapolation methods, partial differentiation.

Numerical Integration: Introduction, open type integration rules, methods based on undetermined coefficients: Gauss-Legendre, Gauss-Chebyshev, Romberg Integration.

Double integration: Trapezoidal method, Simpson's method.

UNIT-IV

Numerical Solutions of ordinary differential equations (boundary value problem): introduction, shooting method: linear and non linear second order differential equations.

UNIT-V

Numerical solutions of partial differential equations: introduction, finite difference approximation to derivatives. Laplace equation- Jacobi method, Gauss Seidel Iteration Method, SOR Method, Parabolic Equations, iterative methods for parabolic equations, hyperbolic equations.

TEXT BOOKS:

- M.K. Jain, S.R.K. Iyengar and R.K.Jain, "Numerical Methods for Scientific and Engineering Computation", New Age International (P) Limited, Publishers, 4th Edition, 2003.
- 2. S.S.Sastry, "*Introductory Methods of Numerical Analysis*", Prentice Hall India Pvt., Limited, 4th Edition.

REFERENCES:

1. Samuel Daniel Conte, Carl W. De Boor, "Elementary Numerical Analysis: An Algorithmic Approach", 3rd Edition, McGraw-Hill.