
AUTOMATA & COMPILER DESIGN

Course code: 13CS2110 L P C

4 0 3

Pre requisites: Formal Languages and Automata Theory, Graph

Theory.

Course Educational Objectives:

The purpose of this course is to acquaint the student with an overview of

the theoretical foundations of computer science from the perspective of

formal languages

Course outcomes:

Upon completion of this course, the student should be able to:

• Explain deterministic and non-deterministic machines.

• Comprehend the hierarchy of problems arising in the computer

sciences.

• Design a deterministic finite-state machine to accept a specified

language.

• Explain how a compiler can be constructed for a simple context

free language.

• Determine a language’s location in the Chomsky hierarchy (regular

sets, context-free,

context-sensitive, and recursively enumerable languages).

UNIT – I

Formal Language and Regular Expressions: Languages, Definition

Languages regular expressions, Finite Automata – DFA,

NFA.Conversion of regular expression to NFA, NFA to DFA.

Applications of Finite Automata to lexical analysis, lex tools.

UNIT – II

Context Free grammars and parsing : Context free grammars, derivation,

parse trees, ambiguity LL(K) grammars and LL(1) parsing Bottom up

parsing, handle pruning, LR Grammar Parsing, LALR parsing, parsing

ambiguous grammars, YACC programming specification.

30

UNIT – III

Semantics : Syntax directed translation, S-attributed and L-attributed

grammars, Intermediate code – abstract syntax tree, translation of simple

statements and control flow statements.

Context Sensitive features – Chomsky hierarchy of languages and

recognizers. Type checking, type conversions, equivalence of type

expressions, overloading of functions and operations.

UNIT – IV

Symbol table, Storage organization, storage allocation strategies scope

access to now local names, parameters, language facilities for dynamics

storage allocation. Code optimization Principal sources of optimization,

optimization of basic blocks, peephole optimization, flow graphs,

optimization techniques.

UNIT – V

Code generation : Machine dependent code generation, object code

forms, generic code generation algorithm, Register allocation and

assignment. Using DAG representation of Block.

Text Books:

1. John E. Hopcroft, Rajeev M & J D Ullman: “Introduction to

Automata Theory Languages &Computation”, 3
rd

Edition, Pearson

Education, 2007.

2. Aho, Ullman, Ravisethi: “Compilers Principles, Techniques and

Tools”, 2
nd

Edition, Pearson Education, 2009.

References:

1. Tremblay J P, Sorenson G P: “The Theory & Practice of Compiler

writing”, 1
st

Edition, BSP publication, 2010.

2. Appel W & Andrew G M: “Modern Compiler Implementation in

C”, 1
st

Edition, Cambridge University Press, 2003.

3. Louden: “Compiler Construction, Principles & Practice”, 1
st

Edition, Thomson Press, 2006.

4. Sipser Michael: “Introduction to Theory of computation”, 1
st

Edition, Thomson, 2009.

31

