SCHEME OF COURSE WORK

Course Details:

Course Title	: NETWORK ANALYSIS AND SYNTHESIS								
Course Code	:13EE1104 L T P C :4 1 0 3								
Program:	: B. Tech.								
Specialization:	: ELECTRICAL AND ELECTRONICS ENGINEERING								
Semester	: III SEM								
Prerequisites : MATHEMATICS-I, II AND BASIC NETWORK ANALYSIS									
Courses to which it is a prerequisite :									

Course Outcomes (COs): At the end of the course students will be able to:

1	Solve the Network problems using Graph theory; acquire the knowledge of Network
	Topology and Duality in Electrical Networks.
2	Analyze the Networks using Differential Equation Approach and acquire the knowledge of
	RLC- Series & Parallel circuits, for different Excitations.
3	Evaluate the Networks using Laplace Transforms Approach.
4	Analyze the Network functions, Two Port Networks and Ladder Networks.
5	Design and Evaluate the LC, RC & RL Networks using Foster's and Cauer Forms.

Program Outcomes (POs): The graduate of Electrical and Electronics Engineering will be able to:

1	Be on par with those from any advanced institution.							
2	Take up any job either in the core industry (or) in allied disciplines.							
3	Fit to write any competitive examinations for getting selected either for M.S. program (or) to							
	undertake relevant career at a high end.							
4	Develop a techno ethical personality that makes him serve the people in general & Electrical &							
	Electronics Engineering in particular.							
5	Enable the students adopt themselves in any socio-technological situation.							
6	Develop communication and leadership skills so that the candidates in their future become							
	leaders in the industry & academia.							
7	Make students do projects either of fundamental nature (or) of the ones useful to industry such							
	that in either case they enter the frontiers of research.							
8	Have a basic capability to analyze and /or design an electrical &electronics system and be useful							
	to the community in general.							
9	Function effectively as an individual and also as a member and leader in diverse teams.							
10	Communicate effectively problems of his discipline to the experts of other disciplines.							
11	Have sufficient working knowledge in IT tools for him to correctly model the system and predict							
	the solution.							
12	Prepare for a life-long learning in the broadest context of technological changes.							

Course Outcome versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	S	S	S	S	М	Μ	S	S	Μ	М	-	М
CO-2	S	S	S	S	М	Μ	S	S	Μ	М	-	М
CO-3	S	S	S	S	М	Μ	S	S	Μ	М	-	М
CO-4	S	S	S	S	Μ	Μ	S	S	М	М	-	М
CO-5	S	S	S	S	М	М	S	S	М	М	-	М

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods: Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam

Teaching-Learning and Evaluation

Week	ek TOPIC / CONTENTS		Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule
1	Unit I: NETWORK TOPOLOGY Introduction to Network Topology, Linear Graphs in Electrical Networks, Basic Definitions, Incidence, Loop and cut-set matrices.	mes CO1	Explain how Network Topology is useful in Network Analysis? Take any Electrical Network and determine the Loop and Cut set Matrices by Network Topology?	 Lecture Discussion Problem Solving 	Mid-Test 1 (Week 8) Seminar (Week 1)
2	Fundamental Loop and Fundamental Cut- Set Matrices, Graph Theoretic version of KCL and KVL.	CO1	Explain how to draw the Fundamental Loop and Fundamental Cut set matrices? Take any Electrical Network and determine the Fundamental Loop and Fundamental Cut set Matrices by Network Topology?	 Lecture Discussion Problem solving 	Mid-Test 1 (Week 8) Seminar (Week 2)
3	Loop Impedance and Node Admittance Matrices, Duality in Electrical Networks.	CO1	Take any Electrical Network and determine the Loop and Node Admittance Matrices? Take any Electrical Network and Draw the Duality of the Network?	 Lecture Discussion Problem solving 	Mid-Test 1 (Week 8) Seminar (Week 3)
4	UNIT II: NETWORK ANALYSIS - I (Differential Equation Approach) Network elements, Initial and final conditions (Constant flux linkage and Charge theorems),	CO2	State and prove the constant flux linkage Theorem? State and prove the constant charge Theorem?	 Lecture Discussion Problem Solving 	Mid-Test 1 (Week 8) Seminar (Week 4)
5	Step and Impulse response of RC & RL Circuits (Concept of time constant), Solution of RLC- Series & Parallel circuits for the step and impulse excitations	CO2	Determine the Step Response of RLC series circuit? Determine the Step Response of RLC parallel circuit?	 Lecture Discussion Problem Solving 	Mid-Test 1 (Week 8) Seminar (Week 5)
6	Analysis of Transformer (Mutual Inductance).	CO2	Explain what is the Necessity for the Transformer? Explain how to Analyze the Transformer?	 Lecture Discussion Problem Solving 	Mid-Test 1 (Week 8) Seminar (Week 6)
7	UNIT III: NETWORK ANALYSIS USING LAPLACE TRANSFORMS The Transformed Circuit, Thevenin's and Norton's Theorems,	CO3	Draw and Explain the Thevenin's Transformed circuit? Draw and Explain the Nortan's Transformed circuit?	 Lecture Discussion Problem Solving 	Mid-Test 1 (Week 8) Seminar (Week-7)
8	Mid-Test 1		UNIT I, II AND HALF PAT IN III.		
9	The system function (with poles and zeros), the step and impulse responses,	CO3	Determine the step response of RL and RC circuits? Determine the impulse Response of RL and RC circuits?	 Lecture Discussion Problem solving 	Mid-Test (Week 17) Seminar (Week-9)
10	The convolution Integral, The Duhamel Superposition Integral.		State and Explain the convolution theorem?	 Lecture Discussion Problem Solving 	Mid-Test (Week 17) Seminar (Week-10)
11	UNIT IV: NETWORK ANALYSIS – II (Two- Ports) Network functions, Two port Networks: Z, Y, H and T (ABCD) Parameters.	CO4	Write the importance of network functions? Draw the equivalent circuit of Z, Y, H Parameters?	 Lecture Discussion Problem Solving 	Mid-Test (Week 17) Seminar (Week-11)

12	RelationshipbetweenTwoPortparameters,Transfer function using twoport parameters.Inter connection of two port networks,	CO4	Explain the inter relationship between Two port Networks? Determine the transfer function of Two Port Networks? Derive the Expression for Series and	 Lecture Discussion Problem solving 	Mid-Test (Week 17) Seminar (Week-17) Mid-Test
13	Analysis of Ladder networks.	CO4	Parallel connection of Two Port Networks? Derive the Cascade connection of Two Ports Network?	 Lecture Discussion Problem Solving 	(Week 17) Seminar (Week-13)
14	UNITV:SYNTHESISOFNETWORKSCausalityandstability,Hurwitzpolynomials,PositiveRealFunctions,ElementarySynthesisprocedure,	CO5	Write the properties of Hurwitz polynomials? Write the properties of Positive Real Function?	 Lecture Discussion Problem Solving 	Mid-Test (Week 17) Seminar (Week-14)
15	Properties of LC Immittance functions, Synthesis of LC driving point function by Foster's and Cauer Forms.	CO5	Write the properties of LC Immittance function? Find the first, second Foster Form's and First and second Cauer forms for the given LC function?	 Lecture Discussion Problem Solving 	Mid-Test (Week 17) Seminar (Week-15)
16	Properties of RC & RL driving Point Function, Synthesis of RC & RL functions Foster's and Cauer Forms.	CO5	Write the properties of RL and RC Immittance function? Find the first, second Foster Form's and First and second Cauer forms for the given RC and RL functions?	 Lecture Discussion Problem Solving 	Mid-Test (Week 17) Seminar (Week-16)
17.	Mid-Test 2		HALF PART III UNIT, IV, V UNITS.		
18.	Preparation and Practical Examination				
19,20	END EXAM		UNIT I, II, III, IV, V.		Assessment will be on all topics at END EXAM