SCHEME OF COURSE WORK

Course Details:

Course Title	: ELECTROMAGNETICS								
Course Code	: 13EE1103 L T P C : 4 1 0 3								
Program:	: B. Tech.								
Specialization:	: ELECTRICAL AND ELECTRONICS ENGINEERING								
Semester	: III SEM								
Prerequisites	uisites : Vector Calculus, Coordinate systems MATHEMATICS-I, II								
Courses to which it is a prerequisite :									

Course Outcomes (COs): At the end of the course students will be able to:

1	Summarize the laws of Electrostatics and apply them in electrostatic field.							
2	Summarize the laws of Magnetostatics and apply them in static magnetic field							
3	Compute the force experienced by charged bodies in magnetic field							
4	Identify magnetic potential and its properties							
5	Identify the time varying field and understand Faraday's Laws of Electromagnetic Induction							

Program Outcomes (POs):

1	Be on part with those from any advanced institution.							
2	Take up any job either in the core industry (or) in allied disciplines.							
3	Fit to write any competitive examinations for getting selected either for M.S. program (or) to							
	undertake relevant career at a high end.							
4	Develop a techno ethical personality that makes him serve the people in general & Electrical &							
	Electronics Engineering in particular.							
5	Enable the students adopt themselves in any socio-technological situation.							
6	Develop communication and leadership skills so that the candidates in their future become							
	leaders in the industry & academia.							
7	Make students do projects either of fundamental nature (or) of the ones useful to industry such							
	that in either case they enter the frontiers of research.							
8	Have a basic capability to analyze and /or design an electrical &electronics system and be useful							
	to the community in general.							
9	Function effectively as an individual and also as a member and leader in diverse teams.							
10	Communicate effectively problems of his discipline to the experts of other disciplines.							
11	Have sufficient working knowledge in IT tools for him to correctly model the system and predict							
	the solution.							
12	Prepare for a life-long learning in the broadest context of technological changes.							

Course Outcome Versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	S	S	S	S	Μ	М	М	Μ	М	Μ	-	М
CO-2	S	S	S	S	S	S	М	Μ	М	Μ	-	М
CO-3	S	S	S	S	S	Μ	М	М	Μ	Μ	-	М
CO-4	S	S	S	S	S	М	М	М	М	М	-	М
CO-5	S	S	S	S	S	S	М	М	М	М	-	М

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outco mes	Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule
1	UNIT-I: Introduction to electrostatic fields,Coloumbs Law,EFI,Gauss's Law	CO1	Define Potential Gradient	 Lecture Discussion Problem Solving 	Mid-Test 1 (Week 8) Seminar (Week 1)
2	Laplace's and Poissons equation Electric Dipole,Electric field inside a dielectric material.	CO1	Define Electric dipole? Discuss behaviour of conductors in an electric field	 Lecture Discussion Problem solving 	Mid-Test 1 (Week 8) Seminar (Week 2)
3	Energy stored and energy density in a static electric field	CO1	Discuss dielectric boundary conditions? Define energy stored and Energy Density in a static electric field?	 Lecture Discussion Problem solving 	Mid-Test 1 (Week 8) Seminar (Week 3)
4	UNIT-II: MAGNETOSTATICS Biot savart's Law,Oesterd's Experiment,Magnetic field Intensity	CO2	Derive the expression for Magnetic Field Intensity due to a circular and solenoid current carrying wire	 Lecture Discussion Problem Solving 	Mid-Test 1 (Week 8) Seminar (Week 4)
5	Ampere's Circuital Law and its applications,MFI due to an infinite sheet of current	CO2	MFI due to an infinite sheet of current and a long current carrying filament.	 Lecture Discussion Problem Solving 	Mid-Test 1 (Week 8) Seminar (Week 5)
6	Field due to a circular loop of wire	CO2	Discuss about field due to a circular loop of wire	 Lecture Discussion Problem Solving 	Mid-Test 1 (Week 8) Seminar (Week 6)
7	UNIT-III: Forces in magnetic fields Magnetic force, Moving charges in magnetic field,Force between two straight long and parallel current carrying conductors	CO3	Discuss Lorentz force expression	 Lecture Discussion Problem Solving 	Mid-Test 1 (Week 8) Seminar (Week-7)
8	Mid-Test 1		UNIT I, II AND HALF PART IN III rd .		
9	Magnetic dipole and dipole moment	CO3	Discuss force on a current element in a magnetic field.	 Lecture Discussion Problem solving 	Mid-Test (Week 17) Seminar (Week-9)
10	¹⁰ Torque on a current loop placed in a magnetic field		Derive the expression for torque on a current loop placed in magnetic field.	 Lecture Discussion Problem Solving 	Mid-Test (Week 17) Seminar (Week-10)

11	UNIT IV: Magnetic Potential Scalar magnetic potential and its limitations,Vector magnetic	CO4	Discuss vector magnetic potential and its properties	 Lecture Discussion Problem Solving 	Mid-Test (Week 17) Seminar (Week-11)
	potential and its limitations			Solving	(week-11)
12	Determination of self inductance of solenoid and toriod and mutual inductance between straight long wire and square loop wire	CO4	Explain about Self inductance and mutual inductance of solenoid	 Lecture Discussion Problem solving 	Mid-Test (Week 17) Seminar (Week-17)
13	Energy stored and energy density in magnetic fields, Neumann's formulae	CO4	Derive the expression for energy stored in magnetic fields	 Lecture Discussion Problem Solving 	Mid-Test (Week 17) Seminar (Week-13)
14	UNIT-V: Maxwell's equation,Statically and dynamically induced emf	CO5	Explain statically induced and dynamically induced emf	 Lecture Discussion Problem Solving 	Mid-Test (Week 17) Seminar (Week-14)
15	Displacement current	CO5	Explain about displacement current	 Lecture Discussion Problem Solving 	Mid-Test (Week 17) Seminar (Week-15)
16	Poynting theorem	CO5	Discuss about poynting theorem	 Lecture Discussion Problem Solving 	Mid-Test (Week 17) Seminar (Week-16)
17.	Mid-Test 2		UNIT IV, V AND HALF PAT IN III rd		
18.	Preparation and Practical Examination				
19,20	END EXAM		UNIT-I,II,III,IV,V		Assessment will be on all topics at END EXAM