SCHEME OF COURSE WORK

Course Title	UTILIZATION OF ELECTRICAL ENERGY						
Course Code	13EE1135 LTPC 4003						
Program	B.Tech						
Branch	Electrical and Electronics Engineering						
Semester	VIII						
Prerequisites	Basic knowledge in physics, kinematics, electrical engineering.						
Course to which it is prerequisite	Engineering						

<u>Course Outcomes (COs):</u> At the end of the Course, the Student will be able to:

	· · · · · · · · · · · · · · · · · · ·
CO-1	Identify a right drive for a particular application.
CO-2	Distinguish between various types of heating methods.
CO-3	Distinguish between various types of Welding methods.
CO-4	Design Illumination systems for various applications.
CO-5	Summarize different types of electrical traction systems.

Program Outcomes (POs):

The student of Electrical and Electronics Engineering at the end of the program will be able to:

PO-1	Apply the knowledge of basic sciences and electrical and electronics engineering fundamentals to solve
	the problems of power systems and drives.
PO-2	Analyze power systems that efficiently generate, transmit and distribute electrical power in the context of
	present Information and Communications Technology.
PO-3	Design and develop electrical machines and associated controls with due considerations to societal and
	environmental issues.
PO-4	Design and conduct experiments, analyze and interpret experimental data for performance analysis.
PO-5	Apply appropriate simulation tools for modeling and evaluation of electrical systems.
PO-6	Apply the electrical engineering knowledge to assess the health and safety issues and their consequences.
PO-7	Demonstrate electrical engineering principles for creating solutions for sustainable development.
PO-8	Develop a techno ethical personality that help to serve the people in general and Electrical and Electronics
	Engineering in particular.
PO-9	Develop leadership skills and work effectively in a team to achieve project objectives.
PO-10	Communicate effectively in both verbal and written form.
PO-11	Understand the principles of management and finance to manage project in multi disciplinary
	environments.
PO-12	Pursue life-long learning as a means of enhancing the knowledge and skills.

Course Outcome versus Program Outcomes:

	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12
CO-1	S	М	S	S	М	М	М					М
CO-2	S	М	S	S	М	М	М					М
CO-3	S	М	S	S	М	М	М					М
CO-4	S	М	S	S	М	М	М					М
CO-5	S	М	S	S	М	М	М					М

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outco mes	Sample questions	Teaching- learning strategy	Assessment Method & Schedule
1.	ELECTRIC DRIVES: Type of electric drives, choice of motor, starting and running characteristics.	CO-1	What is an Electric Drive and explain the classification of Electric Drives.What are the factors for selecting of Electric Drives and also explain the Speed Torque characteristics of it.	 Lecture Problem solving 	Assignment (Week 2) Mid-Test 1 (Week 9) Quiz (Week 4)
2.	Speed control, temperature rise, Particular applications of electric drives.	CO-1	Explain the Operating/Running characteristics of Electric Motors. (DC Shunt, Series, Compound, 3- IM, 1- IM(Types), Universal, Repulsion, Synchronous, Hysterisis Motors)	LectureProblem solving	Mid-Test 1 (Week 9) Quiz (Week 4)
3.	Types of industrial loads, continuous, Intermittent and variable loads, load Equalization.	CO-1	A 4-pole, 50Hz IM has a Flywheel on its shaft. Total Inertia at the motor shaft is 1000 kg-m 2. Load torque is 100kg-m for 10 sec followed by no-load period long enough for the flywheel to regain its full speed. Motor has the slip of 6% at a torque of 50kg-m. Calculate the speed at the end of deceleration period. Assume motor speed torque characteristics to be a straight line in the region of interest and neglect friction and windage losses.	 Lecture Problem solving 	Assignment (Week 2)
4.	ELECTRIC HEATING: Advantages and methods of electric heating.	CO-2	Explain the concept of choice of frequency for electric heating purposes. What are the methods of Electric Heating? Explain them briefly	• Lecture	Mid-Test 1 (Week 9) Quiz (Week 4)
5.	Resistance heating	CO-2	Compare Direct core type Induction furnace and Indirect core type Induction furnace. Explain briefly about Indirect Resistance Heating and also explain its applications.	• Lecture	Mid-Test 1 (Week 9) Quiz (Week 4)
6.	Induction heating and Dielectric heating.	CO-2	In a 3-phase 440V 50Hz star connected 20kW oven, the temperature of the wire is 1200 degree C and that of the charge is 700 0 C. If Radiating efficiency is 0.6 and emissivity is 0.9, design the heating element. A strip of thickness 0.025mm having resistivity 1.05 x 10 -60hm-m is used.	LectureProblem solving	Mid-Test 1 (Week 9)

7.	ELECTRIC WELDING: Electric welding, resistance and arc welding.	CO-3	Explain the importance of welding and also mention its advantages and disadvantages. Mention few differences between Flash Welding and Upset Butt Welding.	• Lecture	Assignment (Week 2)
8.	Electric welding equipment	CO-3	Explain Butt Welding in detail. Write short notes on Projection Welding and also mention its advantages over Spot Welding.	Lecture	Mid-Test 1 (Week 9) Quiz (Week 4)
9.			MID-I		
10.	Comparison between A.C. and D.C. Welding.	CO-3	Mention few differences between AC and DC Welding	• Lecture	Quiz (Week 13) Mid-Test 2 (Week 18)
11.	ILLUMINATION FUNDAMENTALS & VARIOUS ILLUMINATION METHODS: Introduction, terms used in illumination, laws of illumination	CO-4	What is Luminous Flux Intensity?What are the basic Laws of Illumination?Explain them in detail.Explain the different measurement techniques used for luminous intensity.	Lecture	Assignment (Week 12) Mid-Test 2 (Week 18)
12.	Polar curves, photometry, integrating sphere, sources of light.	CO-4	Write short notes on Polar Curves. What is Photometry and what is its importance.	 Lecture 	Quiz (Week 13) Mid-Test 2 (Week 18)
13.	Discharge lamps, MV and SV lamps – comparison between tungsten filament lamps and fluorescent tubes Basic principles of light control, Types and design of lighting and flood lighting.	CO-4 CO-4	 Write short notes on Tungsten and Fluorescent Lamps. Write short notes on Discharge lamps. A lamp fitted with 120 degrees angled cone reflector illuminates circular area of 200 metre in diameter. The illumination of the disc increases uniformly from 0.5 metre-candle at the edge to 2 metre-candle at the centre. Determine i. the total light received ii. Average illumination of the disc principles involved in Light Control. What is Lightning? Types of Lightning. 	 Lecture Problem solving Lecture 	Assignment (Week 12) Mid-Test 2 (Week 18) Mid-Test 2 (Week 18)
15.	ELECTRIC TRACTION: System	CO-5	For a quadrilateral speed-time curve of an electric train, derive expression for	LectureProblem	Mid-Test 2 (Week 18)

	of electric traction and track electrification. Review of existing electric traction systems in India. Special features of traction motor, methods of electric braking-plugging rheostatic braking and regenerative braking		the distance between stops and speed at the end of the coasting period. A train is to be run between two stations 5kms apart at an average speed of 50km/hr. If the maximum speed is to be limited to 70km/hr, acceleration to 2km/hr/sec, braking retardation to 4km/hr/sec and coasting retardation to 0.1km/hr/sec, determine the speed at the end of coasting, duration of coasting period and braking period.	solving				
16.	Mechanics of train movement. Speed- time curves for different services – trapezoidal and quadrilateral speed time curves. Calculations of tractive effort, power, specific energy consumption for given run, effect of varying acceleration and braking retardation	CO-5	Briefly explain the a.c. motors used in traction. The scheduled speed of a trolley service is to be 53km/hr. The distance between stops is 2.8km. The track is level and each stop is of 30 sec duration. Using simplified speed-time curve, calculate the maximum speed, assuming the acceleration to be 2km/hr/sec, retardation 3.2km/hr/sec, the dead weight of the car as 16 tonnes, rotational inertia as 10% of the dead weight and track resistance as 40 newtons/tonne. If the overall efficiency is 80%, calculate (i) the maximum power output from the driving axles (ii) the specific energy consumption in watt-hr/tonnekm.	 Lecture Problem solving 	Mid-Test 2 (Week 18)			
17.	Adhesive weight and braking retardation adhesive weight and coefficient of adhesion.	CO-5	Explain dead weight, accelerating weight, coefficient of adhesion and train resistance referred to traction.	LectureProblem solving	Mid-Test 2 (Week 18)			
18.			MID TEST – 2					
19. /20.	SEMESTER END EXAM							