SCHEME OF COURSE WORK

Course Details:

Course Title	:Tooling for Pro	duction				
Course Code	:15ME2105		L	Р	3 0	3
			С			
Program:	: M.Tech.					
Specialization:	: CAD/CAM					
Semester	:I					
Prerequisites	:Manufacturing	Technology				
Courses to which it is a						
prerequisite						

Course Outcomes (COs): The student will be able to

CO1	Describe tool design methods and punch and die manufacturing techniques
000	
CO2	Select material for cutting tools and gages; classify various cutting tools and gages and identify their nomenclature
CO3	Describe the principles of clamping, drill jigs and computer aided jig design
CO4	Design fixtures for milling, boring, lathe, grinding, welding; identify fixtures and cutting tools for NC machine tools
CO5	Explain the principles of dies and moulds design

Program Outcomes (POs)

At the end of the program, the students in CAD/CAM will be able to

1	Acquire fundamentals in the areas of computer aided design and manufacturing
2	Apply innovative skills and analyze computer aided design and manufacturing
	problems critically
3	Identify, formulate and solve design and manufacturing problems
4	Carry out research related to design and manufacturing
5	Use existing and recent CAD/CAM software
6	Collaborate with educational institutions, industry and R&D organizations in multi
	disciplinary teams
7	Apply project and finance management principles in engineering projects
8	Prepare technical reports and communicate effectively
9	Engage in independent and life-long learning and pursue professional practice in
	their specialized areas of CAD/CAM
10	Exhibit accountability to society while adhering to ethical practices
11	Act independently and take corrective measures where necessary

Course Outcome Versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO-	М	М										М
CO- 2	S	S	М	М								
CO-	S	S	S	М	М							М
CO- 4	М	Μ	М	М						М		
CO- 5	S	S	М	М								М

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods:	Assignment / Seminar / Mid-Test / End Exam
------------------------	--

Teaching-Learning and Evaluation

Wee k	TOPIC / CONTENTS	Course Outco mes	Sample questions	TEACHING- LEARNING STRATEGY	Assessm ent Method & Schedul e
1	Tool design methods: tentative design solutions, finished design, drafting and design techniques in tooling drawings	CO-1	Explain various drafting and design techniques.	Lecture Demonstratio n	Assignm ent (Week 2 - 4)
2	Punch and die manufacturing techniques	CO-1	Discuss considerations in punch and die design	Lecture / Discussion	Mid-Test 1 (Week 9)
3	Tooling materials: Introduction, properties of tool materials, metal cutting tools, single point cutting tools,	CO-2	What is ment by tool steel? What are the characteristics of oxide cutting tools?	Lecture Problem solving	Assignm ent – 1 (Week 2 - 6)
4	Milling cutters, drills and drilling, reamer classification, taps, tap classification, the	CO-2	Why is chip formation in miling more complicated	Lecture / Discussion	

	selection of carbide cutting tools, various heat treatments		than in single point turning?		
5	Gages and gage design: Fixed gages, gage tolerances, the selection of material for gages.	CO-2	Design a form gauge to check the angle of the workpiece shown in figure.	Lecture / Discussion Demonstratio n	
6	Design of jigs: Principles of clamping, drill jigs, chip formation in drilling,	CO-3	What are the common methods of locating from circular surface?	Lecture / Discussion Demonstratio n Problem solving	
7	General considerations in the design of drill jigs, drill jigs and modern manufacturing	CO-3	What are the general considerations in the design of drill jigs?	Lecture Demonstratio n Problem solving	
8	computer aided jig design	CO-3	Explain computer aided jig design.	Lecture Demonstratio n	
9	Mid-Test 1				
10	Design of fixtures: Types of fixtures, vice fixtures, milling fixtures, boring fixtures,	CO-4	Design a milling fixture to machine the link connecting rod shown in figure.	Lecture/Discu ssin Demonstratio n	Mid-Test 2 (Week 18)
11	Broaching fixtures, lathe fixtures, grinding fixtures	CO-4	Design a grinding fixture to surface grind the workpiece shown in figure.	Lecture / Discussion Problem solving	
12	Computer aided fixture design, welding fixtures, fixture design for NC machine tools	CO-4	Design a universal N/C fixture to hold the workpiece shown in figure.	Lecture / Discussion Demonstratio n	Assignm ent – 2 (Week 12 - 16)
13	Cutting tools for numerical control, tool holding methods for numerical control.	CO-4	How are lathe chicks used as holding fixtures in N/C machine tools?	Lecture / Discussion	
14	Design of dies and moulds: Die-design fundamentals, blanking and piercing die construction	CO-5	Determince the proper die clearance for theb workpeice shown in Figure. What are the	Lecture / Discussion Problem solving Demonstratio n Lecture /	
	Pilots, strippers and pressure		willar are the	Lecture /	

	pads, presswork materials, bending dies, forming dies, drawing operations		various types of neding dies?	Discussion Demonstratio n
16	Mould design: Splits in mould, split locking, two-cavity and multi-cavity moulds	CO-5	What are the various types of moulds and write general considerations in mould design	Lecture / Discussion Demonstratio n
17	Design details of injection moulds	CO-5	Comment on design considerations in design of injection moulds.	Lecture / Discussion
18	Mid-Test 2			
19/ 20	END EXAM			