SCHEME OF COURSE WORK

Course Details:

Course Title	: Advanced Structural Analysis					
Course Code	: 19CE2201	L P C	: 303			
Program:	: M. Tech.					
Specialization:	: Structural Engineering					
Semester	:I					
Prerequisites	: Strength of Materials, Structural Analysis, Finite Element Methods.					
Courses to which it is a prerequisite : None						

Course Outcomes (COs):

At the end of the course, the student will be able to:

1	Know the type of non-linearity and its analysis.
2	Analyse beams and building frames by flexibility method.
3	Analyse beams and building frames by stiffness method.
4	Apply the concept of ILDs for beams and trusses.
5	Analyse cables and suspension bridges.

Program Outcomes (POs): Post graduates will be able to:

1	Synthesize existing and new knowledge in various sub areas of structural engineering
2	Analyse complex engineering problems critically with adequate theoretical background for practical applications.
3	Evaluate a wide range of feasible and optimal solutions after considering safety and environmental factors.
4	Demonstrate the ability to pursue research by conducting experiments and extract the relevant information through
	literature surveys.
5	Use state –of- the- art of modern tools for interpreting the behaviour and modeling of complex engineering structures.
6	Attain the capability to work in multi-disciplinary teams to achieve common goals.
7	Demonstrate the knowledge to perform the projects efficiently in multi-disciplinary environments after consideration
	of economical and financial matters.
8	Communicate effectively on complex engineering activities to prepare reports and make presentations.
9	Engage in life-long learning independently to improve knowledge.
10	Understand the responsibility of carrying out professional practices ethically for sustainable development of society.
11	Examine critically and independently one's actions and take corrective measures by learning from mistakes.

Course Outcome versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO-1	S	S	Μ	Μ							
CO-2	S	S	Μ	Μ							
CO-3	S	S	Μ	М							
CO-4	S	S		М							
CO-5	S	S	S	Μ	S						

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods:

Assignment / Seminar / Mid-Test / End Exam

Teaching-Learning and Evaluation

Wee k No.	TOPIC / CONTENTS	Course Outcomes	Sample questions	TEACHING- LEARNI NG STRAT EGY	Assessment Method & Schedul e
1	Non-Linear Analysis: Introduction, types of non-linearity,	CO-1	What is meant by non- linearity and explain in detail with different types?	 Lecture/ Discussion 	
2	Methods of non-linearity	CO-1	What are the different methods of non-linearity explain in detail with neat diagrams?	 Lecture/ Discussion 	
3	Analysis of material non-linear problems	CO-1	Explain in detail about material non-linear problems.	 Lecture/ Discussion 	
4	Analysis of geometric non-linear problems	CO-1	Explain in detail about geometric non-linear problems.	 Lecture/ Discussion 	Assignment
5	Formulation of stiffness matrix for the indeterminate beam system Solve the beams by stiffness method	CO-2	Analyse the given indeterminate beams by stiffness method	 Lecture Problem solving 	

6	Formulation of stiffness matrix for the		Analyse the given frame by	Lecture	
	frame system	CO-2	stiffness method		
		002		Problem solving	
7	Solve the frames by stiffness method		Analyze the given trues by		Aggionmont
/	Formulation of suffness matrix for the		stiffness method	^a Lecture	Assignment
	i uss system	CO-2	surmess method	• Problem solving	
	Solve the trusses by stiffness method			i ioonenn sort nig	
8	Formulation of flexibility matrix for	CO-3	Analyse the given	• Lecture	
	the indeterminate beam system		indeterminate beams by	Locture	
	Solve the beams by flexibility method		flexibility method	• Problem	
0	MID TEST I			solving	
9	Eormulation of flavibility matrix for		Analyza the given from by	- Looturo	
10	the frame system		flexibility method	^a Declure ^a Problem	
	the frame system	CO-3	nextonity method	solving	
	Solve the frames by flexibility method			C	
11	Formulation of flexibility matrix for		Analyse the given truss by	Lecture	Assignment
	the truss system	CO-3	flexibility method	• Problem	
	Coluce the transcess has flow it it is mothed			solving	
12	Introduction to influence lines Analysis		Analysis the given	□ I ecture	
12	of indeterminate beams by influence	~~ .	continuous beams by using	 Problem 	
	lines	CO-4	influence lines methods	solving	
13	Analysis of three hinged arches by	CO-4	Analysis the given three	Lecture	
	influence lines		hinged arches by using	• Problem	
1.4	Analysia of two hings doubles have		Influence lines methods	solving	Assistant
14	influence lines	CO-4	hinged arches by using	^D Lecture	Assignment
	influence mies	00-4	influence lines methods	solving	
15	Introduction, Equation of General		Derive the equation of the	• Lecture	
	Cable theorem the cable,	CO-5	cable	Problem	
				solving	
16	Horizontal reaction for uniformly	00 F	Calculate the horizontal	• Lecture	
	loaded cable, Tension in the cable	CO-5	reaction of the cable	• Problem	
17	Lengths of the cable when supported		Calculate the lengths of the		Assignment
1/	at the same level.	CO-5	cable	 Problem 	1 voorginnent
		200		solving	
18	MID TEST - II				
	END EXAM				