.SCHEME OF COURSE WORK

Course Title	:Random Variables and Numerical Methods							
Course Code	:13BM1107 LTPC 4103							
Program:	:B.Tech	:B.Tech						
Specialization:	: Electronics and Communication Engineering							
Semester	IV							
Prerequisites	:Fundamentals of Set theory, Basic concepts of Probability, Calculus							
Courses to which it is	a prerequisite	: Probabilistic models, Numerical techniques to solve						
		real world applications						

Course Outcomes (Cos):

1	Explain various concepts of discrete and continuous random variables
2	Determine joint distribution function and density function of multiple random variables
3	Examine the properties of Joint Gaussian Random Variables and classify random processes.
4	Determine numerical solution of algebraic and transcendental equations and discuss different difference
	operators.
5	Use interpolation techniques for data analysis, develop and apply numerical integration techniques and
	numerically solve initial value problems.

Course Outcomes versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S											
CO2	S											
CO3	S											
CO4	S											
CO5	S											

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods: Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam Teaching-Learning and Evaluation

				TEACHIN	
Week	TOPIC / CONTENTS	Course Outcomes	Sample questions	G- LEARNIN G STRATEG Y	Assessment Method & Schedule
1	The Random Variable Concept, Discrete, Continuous, Mixed random variable, distribution function, Density function and properties.	CO-1	Determine whether the following function is a distribution function. $G_{x}(x) = \begin{cases} e^{\frac{-x}{2}}, & x \ge 0\\ 0, & x < 0 \end{cases}$	Lecture / Problem solving	Assignment (Week 2 - 4) / Quiz-I (Week -8)/ Mid- Test 1 (Week 9)
2	The Gaussian Random variable, Conditional distribution and density Function. Expected value, Conditional expected value, Moments, Moments about the origin	CO-1	Find the probability of the event $\{X \le 5.5\}$ for a Gaussian random variable <i>X</i> having $a_X = 3$ and $\sigma_X = 2$	Lecture / Problem solving	Assignment (Week 2 - 4)/ Quiz -I (Week -8)/ Mid- Test 1 (Week 9)
3	Central moments, Variance and Skew, Chebychev's inequality, Markov's inequality. Monotonic and Non monotonic transformations of a continuous random variable, Transformations of a discrete random variable.	CO-1	The natural numbers are the possible values of a random variable X, These numbers occur with probabilities $P(X_n) = (1/2)^n$. Find expected value of X.	Lecture / Problem solving	Mid-Test 1 (Week 9)/ Assignment (Week 2 - 4)/ Quiz -I (Week -8)
4	Vector random variables, Joint distribution and its properties, Joint density and its properties	CO-2	Write the properties of Joint density function.	Lecture / Problem solving	Mid-Test 1 (Week 9)/ Quiz -I (Week -8)
5	Conditional distribution and density statistical independence distribution and density of a sum of random variables, Central limit theorem (without proof).	CO-2	Show that the mean value of a weighted sum of random variables equals to the weighted sum of mean values.	Lecture / Problem solving	Mid-Test 1 (Week 9) / Quiz -I (Week -8)
6	Expected value of a function of random variables, Joint moments about the origin, Joint central moments	CO-2	Random variable X and Y have the joined density $f_{X,Y}(x, y) = \begin{cases} \frac{1}{24}, & 0 < x < \\ 0 < y \\ 0, & \text{else where} \end{cases}$ What is the expected value of the function $g(X,Y) = (XY)^2$	Lecture / Problem solving	Mid-Test 1 (Week 9)/ Quiz -I (Week -8)
7	Jointly Gaussian random variables, Transformations of multiple random variables- One function,	CO-3	Find marginal density functions of X and Y if Random variables X and Y are jointly Gaussian and normalized	Lecture / Problem solving	Mid-Test 1 (Week 9) / Quiz -I (Week -8)
8	Transformations of multiple random variables- multiple functions	CO-3	Let the transformations be linear and given by $Y_1 = T_1(X_1, X_2) = aX_1 + bX_2$ $Y_2 = T_2(X_1, X_2) = cX_1 + dX_2$ where a, b, c, d are constants. then find $f_{Y_1,Y_2}(y_1, y_2)$	Lecture / Problem solving	Mid-Test 1 (Week 9) / Quiz -I (Week -8)
9	Mid-Test 1				
10	Linear transformation of Gaussian random variables and related Problems	CO-3	Show that Linear Transformation of Gaussian is Gaussian	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)/ Assignment (12-14)
11	The Random process concept classification of processes Deterministic	CO-3	Sample functions in a discrete random process are constants. That	Lecture / Problem	Assignment (Mid-Test 2

Introduction to Numerical Methods, Solution of algebraic and transcendental equations-bisection method. Method of false position Newton's method.CO-4Evaluate $\frac{3}{2}$ by Newton's iteration method (correct to four decimal places).Lecture Problem solving// Mid-Test 2 (Week 15) / Quiz-11 (Week -17)/ Assignment (12-14)13Finite differences-forward differences, Differences of a polynomial, Other Differences, Central differences, Differences, Central differences, Newton's interpolation formula.CO-4Estimate the value of $f(0)$ and $f(6)$ for the following data. X 1 2 3 4 5 Y 0 5 22 57 116Lecture / Problem solvingMid-Test 2 (Week 18) / Quiz-11 (Week -17)15Lagrange interpolation, Divided differences, Newton's divided difference formula, Inverse interpolationCO-5Estimate the value of X when $y = 10$ by inverse interpolation for the following data X 1 2 3 Y 5 9 15Lecture / Problem solvingMid-Test 2 (Week 18) / Quiz-11 (Week 13) / Quiz		and on deterministic processes.		is $X(t)=C$ where C is a discrete random variable with possible values c1=1, c2=2, and c3=3 occurring with probabilities 0.6, 0.3 and 0.1 respectively. Is $X(t)$ deterministic?	solving	(Week 18) / Quiz -II (Week -17)/ Assignment (12-14)
Finite differences-forward differences, Backward differences, Central differences, Backward differences, Central differences, Backward differences, Central differences, Differences of a polynomial, Other Differences operator, Relations between the operator, Newton's interpolation formulae Newton's interpolation formulae Newton's interpolation formulae Newton's interpolation formulae Newton's interpolation formulae Newton's interpolation formulae Newton's backward interpolation formulae 	12	Introduction to Numerical Methods, Solution of algebraic and transcendental equations-bisection method, Method of false position Newton's method.	CO-4	Evaluate $\frac{3}{2}$ by Newton's iteration method (correct to four decimal places).	Lecture / Problem solving	Mid-Test 2 (Week 18)/ Quiz -II (Week -17)/ Assignment (12-14)
14Newton's interpolation formula Newton's forward interpolation formula. Newton's backward interpolation formula.CO-4Estimate the value of $f(0)$ and $f(6)$ for the following data. X 1 2 3 4 5 Y 0 5 22 57 116Lecture / Problem solvingMid-Test 2 (Week 18)/ Quiz.11 (Week -17)15Lagrange interpolation, Divided differences, Newton's divided difference formula, Inverse interpolationCO-5Estimate the value of X when $y = 10$ by inverse interpolation for the following data X 1 2 3 Y 5 9 15Lecture / Problem solvingMid-Test 2 (Week 18)/ Quiz.11 (Week 18)/ Quiz.11 (Week 18)/ Quiz.11 (Week 18)/ Quiz.11 (Week 18)/ Quiz.11 (Week 18)/ Quiz.11 	13	Finite differences-Forward differences, Backward differences, Central differences, Differences of a polynomial, Other Difference operators – Shift operator, Average operator, Relations between the operators,	CO-4	Express $\Delta^3 y_0$ in terms of y at different points	Lecture / Problem solving	Mid-Test 2 (Week 18)/ Quiz -II (Week -17)
15Lagrange interpolation, Divided differences, Newton's divided difference formula, Inverse interpolationEstimate the value of X when $y = 10$ by inverse interpolation for the following dataLecture / Problem solvingMid-Test 2 (Week 18) / Quiz -II (Week -17)16Numerical Integration-Trapezoidal, Simpson's one-third and Simpson's three- eighth rules.CO-5Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ by Trapezoidal rule.Lecture / Problem solvingMid-Test 2 (Week 18) / Quiz -II (Week -17)17Euler's Method, Modified Euler's Method, Runge-Kutta method of order 4.CO-5Find $y(0,1)$, if $\frac{dy}{dx} = 3x + y$, $y(0) = 1$ by Runge Kutta method.Lecture / Problem solvingMid-Test 2 (Week 18) / Quiz -II (Week -17)18Mid-Test 2 (Week -17)Image Function of the following function of the following data $\frac{1}{y^2}$ for the following dataImage Function of the following data $\frac{1}{y^2}$ for the following data18Mid-Test 2 (Week -17)Image Function of the following data 	14	Newton's interpolation formulae - Newton's forward interpolation formula Newton's backward interpolation formula.	CO-4	Estimate the value of $f(0)$ and $f(6)$ for the following data. X 1 2 3 4 5 Y 0 5 22 57 116	Lecture / Problem solving	Mid-Test 2 (Week 18)/ Quiz -II (Week -17)
16Numerical Simpson's one-third and Simpson's three- eighth rules.CO-5Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ by Trapezoidal rule.Lecture / Problem solvingMid-Test 2 (Week 18)/ Quiz -II (Week -17)17Euler's Method, Modified Euler's Method, Runge-Kutta method of order 4.CO-5Find $y(0.1)$, if $\frac{dy}{dx} = 3x + y$, $y(0) = 1$ by Runge Kutta method.Lecture / Problem solvingMid-Test 2 (Week 18)/ Quiz -II (Week 18)/ Quiz -II (Week 18)/ Quiz -II (Week 18)/ Quiz -II (Week 18)/ Quiz -II (Week 18)/ Quiz -II (Week 17)	15	Lagrange interpolation, Divided differences, Newton's divided difference formula, Inverse interpolation	CO-5	Estimate the value of X when y = 10 by inverse interpolation for the following data X 1 2 3 Y 5 9 15	Lecture / Problem solving	Mid-Test 2 (Week 18)/ Quiz -II (Week -17)
17Euler's Method, Modified Euler's Method, Runge-Kutta method of order 4.CO-5Find $y(0.1)$, if $\frac{dy}{dx} = 3x + y$, $y(0) = 1$ by Runge Kutta method.Lecture Problem solvingMid-Test 2 (Week 18)/ Quiz -II (Week -17)18Mid-Test 210/20END EXAM10/2010/20	16	Numerical Integration-Trapezoidal, Simpson's one-third and Simpson's three- eighth rules.	CO-5	Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ by Trapezoidal rule.	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)
18 Mid-Test 2	17	Euler's Method, Modified Euler's Method, Runge-Kutta method of order 4.	CO-5	Find $y(0.1)$, if $\frac{dy}{dx} = 3x + y$, $y(0) = 1$ by Runge Kutta method.	Lecture / Problem solving	Mid-Test 2 (Week 18)/ Quiz -II (Week -17)
	18 19/20	Mid-Test 2 END EXAM				