SCHEME OF COURSE WORK

Course Details:

Course Title	: OPERATING SYSTE	M						
Course Code	: 13CT1104 L T P C : 4 1 0 3							
Program:	: B.Tech.	: B.Tech.						
Specialization:	: Computer Science & Engineering, Information Technology							
Semester								
Prerequisites	: Computer Organization							
Courses to which it is a prerequisite : Distuributed operating system								

Course Outcomes (COs):

COU	teomes (COs).
1	Discuss different computer operating systems.
2	Compare CPU scheduling algorithms.
3	Examine Page Replacement algorithms.
4	Differentiate File System and directory implementations.
5	Analyze different types of disk scheduling algorithms.

Program Outcomes (POs): A graduate of Information Technology will be able to

A_{ξ}	graduate of Information Technology will be able to
1	Ability to apply the knowledge of mathematics, science, engineering fundamentals and principles of Information
	Technology to solve problems in different domains.
2	Ability to analyze a problem, identify and formulate the computing requirements appropriate to its solution.
3	Ability to design & develop software applications that meet the desired specifications within the realistic
	constraints to serve the needs of the society.
4	Ability to design and conduct experiments, as well as to analyze and interpret data
5	Ability to use appropriate techniques & tools to solve engineering problems.
6	Ability to apply the knowledge to analyze and understand societal, health, safety, legal, and cultural issues
	relevant to the Information Technology practices.
7	Ability to analyze the local and global impact of computing on individual as well as on society.
8	Ability to demonstrate professional ethical practices and social responsibilities in global and societal contexts.
9	Ability to function effectively as an individual, and as a member or leader in diverse and multidisciplinary
	teams.
10	Ability to communicate effectively with the engineering community and with society at large
11	Ability to understand engineering and management principles and apply these to one's own work, as a member
	and leader in a team, to manage projects.
12	Ability to recognize the need for updating the knowledge in the chosen field and imbibing learning to learn
	skills.

Course Outcome versus **Program Outcomes:**

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	S	S	S	M	M							
CO-2	S	S	M									
CO-3	S	S	M	S	S							
CO-4	S	S	M	S	M		M					
CO-5	S	S	S	M	M							

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods:	Assignment / Quiz / Mid-Test / End Exam

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outcomes	Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule
1	Overview of computer operating systems, computer system organization, computer system architecture, operating systems operations.	CO-1	1.Explain operating system operations	Lecture / DiscussionDemonstration	Quiz (Week-7) Assignment (Week-6 to Week-8) Mid-Test 1
2	protection and security, distributed systems, special purpose systems, operating systems services, systems calls and its types, operating systems structure, operating systems generation.	CO-1	1.Write about operating systems generation	- Lecture / Discussion	Quiz (Week-7) Assignment (Week-6 to Week-8) Mid-Test 1
3	Process, Process Control Blocks, Operations on Processes, Interprocess Communication.	CO- 2	1.Define process.Explain operations on process	Lecture/ Discussion	Quiz (Week-7) Assignment (Week-6 to Week-8) Mid-Test 1
4	Scheduling Criteria, scheduling-criteria algorithms(FCFS, SJF, Round Robin, Priority) and their evaluation.	CO-2	1.What is scheduling of criteria?Explain the algoirthm of Round robin scheduling.	Lecture/ DiscussionProblem solving	Quiz (Week-7) Assignment (Week-6 to Week-8) Mid-Test 1
5	Multiprocessor scheduling, Thread scheduling. Case Study: Linux.	CO-2	1.Explain thread scheduling in detail	Lecture/ DiscussionProblem solving	Quiz (Week-7) Assignment (Week-6 to Week-8)

Template for Scheme of Course Work

	<u> </u>				Mid-Test 1
6	The Critical- section problem, Peterson's Solution,synchronization Hardware, semaphores, classic problems of synchronization.	CO-2	1.What is critical section.List the requirements for satisfying critical section problem.	Lecture/ Discussion	Quiz (Week-7) Assignment (Week-6 to Week-8) Mid-Test 1
7	monitors, Synchronization examples, atomic transactions. Case Study: Linux.	CO-2	1.Disscuss the role of atomic transactions with respect to operating system	Lecture/ Discussion	Quiz (Week-7) Assignment (Week-6 to Week-8) Mid-Test 1
8	Swapping, contiguous memory allocation, paging, structure of the page table, segmentation.	CO- 3	1.what is paging. explain the mechanism of paging	Lecture/ Discussion	Quiz (Week-7) Assignment (Week-6 to Week-8) Mid-Test 1
9	Mid-Test 1				
10	Virtual memory, demand paging, Copy on write, page-Replacement algorithms (FIFO, LRU, LFU, Optimal Page Replacement)	CO-3	1.Discuss about LRU algorithm in detail	 Lecture/ Discussion Problem solving 	Quiz (Week-17) Assignment (Week-15 to Week-17) Mid-Test 2
11	System model, deadlock characterization, Methods for Handling Deadlock, deadlock prevention, detection and Avoidance, recovery form deadlock.	CO-3	1.Explain deadlock and explain various methods for deadlock	Lecture/ Discussion	Quiz (Week-17) Assignment (Week-15 to Week-17) Mid-Test 2
12	I/O Hardware, application interface, kernel I/O subsystem, Transforming I/O requests, Hardware operations, STREAMS, Performance	CO-4	1.Illustrate I/o hardware	Lecture/ Discussion	Quiz (Week-17) Assignment (Week-15 to Week-17) Mid-Test 2
13	File Concept, Access Methods, Directory Structure, File System Mounting.	CO-4	1.Explain directory structure in detail	Lecture/ Discussion	Quiz (Week-17) Assignment (Week-15 to Week-17) Mid-Test 2
14	File system structure, File System Implementation, Directory Implementation, Allocation Methods, Free-space Management, Efficiency and performance, Log-Structured File Systems, Network File Systems.	CO-4	1.Explain free space management in detail	 Lecture/ Discussion 	Quiz (Week-17) Assignment (Week-15 to Week-17) Mid-Test 2

Template for Scheme of Course Work

15	Case Study: Linux, Overview of Mass-storage structure, disk structure, disk attachment, disk scheduling, swap-space management. RAID structure, stable-storage implementation, Tertiary storage structure.	CO-4	List different types disk scheduling mechanisms	 Lecture/ Discussion 	Quiz (Week-17) Assignment (Week-15 to Week-17) Mid-Test 2
16	Goals of Protection, Principles of Protection, Domain of protection, Access Matrix, Implementation of Access Matrix, Access control, Revocation of Access Rights, Capability- Based systems, Language – Based Protection.	CO-5	1.Discuss about principles of protection	 Lecture/ Discussion 	Quiz (Week-17) Assignment (Week-15 to Week-17) Mid-Test 2
17	The Security problem, program threats, system and network threats cryptography as a security tool, user authentication, implementing security defenses, firewalling to protect systems and networks, computersecurity classifications. Case Study: Linux	CO-5	1.Explain different types of threats in detail	 Lecture/ Discussion 	Quiz (Week-17) Assignment (Week-15 to Week-17) Mid-Test 2
18	Mid-Test 2				
19/20	END EXAM				