SCHEME OF COURSE WORK

Course Title	Mechanical Vibrations						
Course Code	15ME2201	L	Р	С	3	0	3
Program	M.Tech.						
Specialization	CAAD						
Semester	Ι						

Course Outcomes (COs):

At the end of the course, the student will be able to

- 1 Explore the need and importance of vibration analysis in mechanical design of machine parts
- 2 Derive the governing differential equations of different vibratory systems
- 3 Analyze the mathematical model of a linear vibratory system todetermine its response
- 4 Analyze free and forced, undamped and damped vibratory systems
- 5 Determine the frequencies and response of vibratory systems to different kinds of excitation
- 6 Predict and avoid the occurrence of resonance

Program Outcomes (POs):

To make the student learn

- 1. Acquire knowledge in latest computer-aided design and analysis tools.
- 2. Create 3D models of real-time components using latest CAD software.
- 3. Acquire technical skills to formulate and solve engineering and industrial problems.
- 4. Carry out analysis for the design of new products.
- 5. Have proficiency to solve problems using modern engineering design tools.
- 6. Have capability to work in multidisciplinary streams.
- 7. Apply project and finance management skills to organise engineering projects.
- 8. Prepare technical reports and present them effectively.
- 9. Engage in lifelong learning.
- 10. Realize professional and ethical responsibilities.
- 11. Conduct surveys, analyse data, plan, design and implement new ideas into action.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO-1	S										
CO-2		S									
CO-3				S							
CO-4				S							
CO-5			S								
CO-6						S					

Course Outcome versus Program Outcomes:

<u>Teaching - Learning and Evaluation</u>									
WEEK	TOPIC / CONTENTS	COU RSE OUT COM ES	SAMPLE QUESTIONS	TEACH ING - LEARN ING STRAT E	ASSE SSME NT METH OD & SCHE DULE				
	Transverse vibration, single concentrated load, uniformly distributed load, several loads Dunkerley's method,	CO1 CO1,	 Calculation of natural frequencies for several loads by using Dunkerley's method Explain about the Rayleigh's energy method Find the natural frequencies 	Lectures					
	energy method, Torsional vibrations	CO1, CO2	of torsional systems						
3	Single, multiple-rotor systems, torsionally equivalent shaft, geared system	CO3		Lectures					
4	Two degree of freedom systems, Principal modes of vibration, two masses fixed on tightly stretched string	CO4	 Find the natural frequencies and mode shapes for a given double pendulum Explain about the principle of dynamic vibration absorber 		Assign ments				
5	double pendulum, torsional system with damping	CO5		Lectures					
6	forced vibration with harmonic excitation, undamped dynamic vibration absorber, untuned viscous damper	CO5							
7	Mid - Test 1	CO1, CO4, CO5							
8	Multi degree of freedom systems, exact analysis, free vibrations, equations of motion	CO5	 Find out the natural frequencies and mode shapes for a given systems Derive the equations of the orthogonal properties of normal modes 	Lectures	Assign				
9	influence coefficients, generalized	CO3			ments				

S - *Strongly correlated, M* - *Moderately correlated, Blank* - *No correlation* **Teaching - Learning and Evaluation**

10	ordinate coupling, natural frequencies	CO3	1.	Determination of natural		
10	Eigen values and eigenvectors, orthogonal properties of normal modes, modal analysis.	03	2.	frequencies by using Stodala's method for a given system Determination of natural frequencies by using Holzer's		
11	Multi degree of freedom systems, Numerical methods	CO3	3.	method Derive the frequency expressions for the torsional	Lectures	
12	Rayleigh`s Method, Dunkerley`s method, Stodola'smethod	CO5		vibration of circular shafts		
13	Rayleigh Ritz Method, Method of matrix iteration	CO5				Assign
14	Holzer's method for natural frequencies of multi rotor systems.	CO5	1.	Derive the frequency expression for the lateral vibration of beams		ments
15	Continuous systems, vibration of strings, longitudinal vibrations of bars	CO5		Explain about the critical speeds of a shaft of a single disc with damping and without damping Explain about the critical		
16	torsional vibrations of circular shafts, lateral vibration of beams Critical speeds of shafts, Critical speed of a light shaft having a singledisc	CO5		speed of a shaft	Lectures	
17	without damping and with damping. Critical speed of a shaft having multiple discs, secondary critical speed	CO5				
18	Mid - Test 2	CO3, CO5				
19/20	END EXAM	All COs				