SCHEME OF COURSE WORK

Course Title	Mechanical Vibrations								
Course Code	13ME2201	L	Т	Р	С	4	0	0	3
Program	M.Tech.								
Specialization	CAAD								
Semester	Ι								

Course Outcomes (COs):

At the end of the course, the student will be able to

1	Explore the need and importance of vibration analysis in mechanical design of
	machine parts
2	Derive the governing differential equations of different vibratorysystems
3	Analyze the mathematical model of a linear vibratory system todetermine its
	response
4	Analyze free and forced, undamped and damped vibratory systems
5	Determine the frequencies and response of vibratory systems to different kinds of
	excitation
6	Predict and avoid the occurrence of resonance

Program Outcomes (POs):

To make the student learn

- 1. Acquire knowledge in latest computer-aided design and analysis tools.
- 2. Create 3D models of real-time components using latest CAD software.
- 3. Acquire technical skills to formulate and solve engineering and industrial problems.
- 4. Carry out analysis for the design of new products.
- 5. Have proficiency to solve problems using modern engineering design tools.
- 6. Have capability to work in multidisciplinary streams.
- 7. Apply project and finance management skills to organise engineering projects.
- 8. Prepare technical reports and present them effectively.
- 9. Engage in lifelong learning.
- 10. Realize professional and ethical responsibilities.
- 11. Conduct surveys, analyse data, plan, design and implement new ideas into action.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO-1	S										
CO-2		S									
CO-3				S							
CO-4				S							
CO-5			S								
CO-6						S					

Course Outcome versus Program Outcomes:

<u>Teaching - Learning and Evaluation</u>									
WEEK	TOPIC / CONTENTS	COU	SAMPLE QUESTIONS	TEACH	ASSE				
		RSE		ING -	SSME				
		OUT		LEARN	NT				
		COM		ING	METH				
		ES		STRAT	OD &				
		-~		Ē	SCHE				
				-	DULE				
1	Transverse vibration, single concentrated load, uniformly distributed load, several loads	CO1	 Calculation of natural frequencies for several loads by using Dunkerley's method Explain about the Rayleigh's energy method Find the natural frequencies 	Lectures					
2	Dunkerley's method, energy method, Torsional vibrations	CO1, CO2	of torsional systems						
3	Single, multiple-rotor systems, torsionally equivalent shaft, geared system	CO3		Lectures					
4	Two degree of freedom systems, Principal modes of vibration, two masses fixed on tightly stretched string	CO4	 Find the natural frequencies and mode shapes for a given double pendulum Explain about the principle of dynamic vibration absorber 		Assign ments				
5	double pendulum, torsional system with damping	CO5		Lectures					
6	forced vibration with harmonic excitation, undamped dynamic vibration absorber, untuned viscous damper	CO5							
7	Mid - Test 1	CO1, CO4, CO5							
8	Multi degree of freedom systems, exact analysis, free vibrations, equations of motion	CO5	 Find out the natural frequencies and mode shapes for a given systems Derive the equations of the orthogonal properties of normal modes 	Lectures	Assign				
9	influence coefficients, generalized	CO3			ments				

S - Strongly correlated, M - Moderately correlated, Blank - No correlation Teaching - Learning and Evaluation

		COs				
19/20	END EXAM	All				
10/20		CO5				
18	Mid - Test 2	CO3,				
	speed					
	multiple discs, secondary critical					
	speed of a shaft having					
	with damping. Critical					
17	without damping and	CO5				
17	a singledisc	005	-			
	of a light shaft having					
	shafts, Critical speed					
	Critical speeds of					
	vibration of beams					
	circular shafts, lateral					
16	torsional vibrations of	CO5		speed of a shaft	Lectures	
	of bars		3.	Explain about the critical		
	longitudinal vibrations			without damping		
	vibration of strings,			speeds of a shaft of a single disc with damping and		
15	Continuous systems,	CO5	2.	Explain about the critical		
	multi rotor systems.		_	vibration of beams		
	natural frequencies of			expression for the lateral		
14	Holzer's method for	CO5	1.	i /		ments
	iteration					Assign
_	Method of matrix	_				
13	Rayleigh Ritz Method,	CO5	-			
	Stodola'smethod					
	Dunkerley's method,					
12	Rayleigh`s Method,	CO5	-	expressions for the torsional vibration of circular shafts		
	Numerical methods		3.	Derive the frequency	Lectures	
11	Multi degree of freedom systems,	005	_	method		
11	modal analysis.	CO3	-	frequencies by using Holzer's		
	of normal modes,		2.			
	orthogonal properties			system		
	eigenvectors,			frequencies by using Stodala's method for a given		
10	Eigen values and	CO3	1.	Determination of natural		
10	natural frequencies			Determination (1 1		
	ordinate coupling,					
	coordinates, Co-					