SCHEME OF COURSE WORK

Course Details:

Course Title	: ELECTRICAL PO	WER QUALITY							
Course Code	: 13EE1124		L T	Р	С	:4003			
Program:	: B.Tech.	: B.Tech.							
Specialization:	: Electrical and Electronics Engineering								
Semester	: VI								
Prerequisites	: Basic knowledge in Electrical Networks, Machines, Power Electronics								
Courses to which it is a prerequisite :									

Course Outcomes (COs):

After completion of the course student acquire knowledge in

1	Define different power quality issues and disturbances.
2	Analyze electrical transient system model and give examples of different types.
3	Describe various grounding and bonding methods.
4	Describe causes and mitigation of harmonics.
5	Measure and solve different power quality problems and describe various custom
	power devices.

Program Outcomes (POs):

A graduate of Power System Control & Automation will be able to

1	Be on par with those from any advanced institution
2	Take up any job either in the core industry (or) in allied disciplines
3	Fit to write any competitive examinations for getting selected either for M.S. program (or) to undertake
_	relevant career at a high end
4	Develop a techno ethical personality that makes him serve the people in general & Electrical &
	Electronics Engineering in particular
5	Enable the students adopt themselves in any socio-technological situation
6	Develop communication and leadership skills so that the candidates in their future become leaders in the
0	industry & academia
	Make students do projects either of fundamental nature (or) of the ones useful to industry such that in
7	either case they enter the frontiers of research
	Have a basic capability to analyze and /or design an electrical & electronics system and be useful to the
8	community in general
9	Function effectively as an individual and also as a member and leader in diverse teams
10	Communicate offectively methods of his dissipline to the synants of other dissiplines
10	Communicate effectively problems of ms discipline to the experts of other disciplines
11	Have sufficient working knowledge in IT tools for him to correctly model the system and predict the solution
1	

Course OutcomeVersusProgram Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO-1	S	S	Μ					М			
CO-2	S	S	Μ			Μ	Μ	Μ			
CO-3	S	S	Μ		Μ	Μ	Μ				
CO-4	S	S	М		Μ						
CO-5	S	S	М		Μ			М			

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

AccoccmontMothods	Assignment / Quiz / Seminar / Case Study / Mid-Test / End Evam
Assessmentivictious.	Assignment / Quiz / Semma / Case Study / Mild Test / End Exam

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outcomes	Sample questions	TEACHING- LEARNING	Assessment Method &
				STRATEGY	Schedule
1	Introduction, power quality issues, remedial measures, power quality vs equipment immunity, power quality concerns, power quality standards, power quality monitoring, common power frequency disturbances, source of steady state disturbances, the effect of steady state disturbance on loads, techniques to reduce disturbances	CO-1	What are the power quality issues and ?	 Lecture Discussion 	Mid-Test 1 (Week 9) Seminar (Week 1)
2	Introduction, Transient System Model, Examples of Transient Models and Their Response, Power System Transient Model, Types and Causes of Transients, Examples of Transient Waveforms	CO-2	Explain types and causes of transients?	 Lecture Discussion 	
3	Introduction, Shock And Fire Hazards, National Electrical Code Grounding Requirements, Essentials of a Grounded System, Ground Electrodes, Earth Resistance Tests, Earth-Ground Grid Systems, Power Ground System, Signal Reference Ground, Signal Reference Ground Methods, Single Point And	CO-3	What is the importance of grounded system? Also give Examples of Grounding Anomalies	 Lecture Discussion 	

	Multipoint Grounding, Ground				
	Loops,				
	Electrochemical Reactions Due To				
	Ground Grids, Examples of				
	Grounding Anomalies or Problems				
	Electromagnetic Interference				
	Terminology, EMI Mitigation				
4	Definition of Harmonics, harmonic	CO-4	What are the effects of harmonics	 Lecture Discussion 	
	number (h), odd and even order		on power system devices?	Discussion	
	harmonics, harmonic phase rotation				
	and phase angle relationship,				
	causes of voltage and current				
	harmonics, individual and total				
	harmonic distortion, harmonic				
	signatures, effect of harmonics on				
	power system devices, guidelines				
	for harmonic voltage and current				
	limitation, harmonic current				
	mitigation				
5	Introduction, power quality	CO-5	Explain principles, configuration	 Lecture 	
	measurement devices, power		and types of Uninterruptable Power Supplies	Discussion	
	quality measurements, number of				
	test locations, test duration,				
	instrument				
	setup and guidelines.				
	Dynamic Voltage Restorer (DVR),				
	D-STATCOM, Unified Power				
	Quality Conditioner (UPQC),				
	Unified Power Quality Conditioner				
	based on current source convert				
	topology, principles, configuration				
	and types of Uninterruptable Power				
	Supplies (UPS).				