SCHEME OF COURSE WORK

Course Details:

Course Title	: EMBEDDED SYSTEMS								
Course Code	: 13EC1133 L T P C : 4 0 0 3								
Program:	: B.Tech.								
Specialization:	: Electronics and Communication Engineering								
Semester	: VII								
Prerequisites	: Digital logic design, computer organization								
Courses to whic	Courses to which it is a prerequisite :								

Course Outcomes (COs):

1	Describe the concepts of embedded system and desktop system and their technology
2	Explain the General Purpose Processors, ASIP, DSP Processors.
3	Demonstrate advantages of State Machine Models, Communication Protocols and Synchronization techniques
4	Summarize the serial communication interfacing
5	Specify different design Technologies of software and hardware design

Course Outcomes versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S	S	M	M	M	M						
CO2	S	S	S	S	S	M						M
CO3	S	S	M	M	S							
CO4		M	M		M	M						
CO5		S	M	M								M

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods:	Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam
---------------------	--

Teaching-Learning and Evaluation

Week	Topic / contents	Course outcomes	Sample questions	Teaching- learning strategy	Assessment method & schedule
1	Embedded systems overview, design challenge, processor technology, IC technology,	CO-1	1.What is an embedded Microprocessor 2.What are the design metrics for an embedded system	LectureDiscussion	Assignment 1/ Quiz1/ Mid1
2	Design Technology, Trade-offs. Single purpose processors RT-level combinational logic,	CO-1	 Explain about design technology. What is RT level combinational logic 	LectureDiscussion	Assignment 1/ Quiz1/ Mid1
3	sequential logic (RT-level), custom single purpose processor design (RT-level), optimizing custom single purpose processors	CO-1	 Explain the optimization technique of custom single purpose processor. Explain sequential logic (RT-level) 	□ Lecture □ Discussion □ PPT	Assignment 1/ Quiz1/ Mid1
4	Basic architecture, operation, Pipelining, Programmer's view, development environment	CO-2	 Draw the architecture of General purpose processor. Explain Pipelining. 	□ Lecture □ Discussion □ PPT	Assignment 1/ Quiz1/ Mid1
5	Application Specific Instruction- Set Processors (ASIPs) – Micro Controllers and Digital Signal Processors.	CO-2	 Write short note on Digital Signal Processors. Write about Application specific instruction set processors 	LectureDiscussion	Assignment 1/ Quiz1/ Mid1
6	Introduction, Models vs. Languages, finite state machines with data path model(fsmd)	CO-2	Differentiate between models and languages. Explain data path model of FSMD	LectureDiscussionProgramsolving	Assignment 1/ Quiz1/ Mid1
7	FSMD using state machines, program state machine model (psm)	CO-3	1. Explain about program state machine model.	LectureDiscussionProgramsolving	Assignment 1/ Quiz1/ Mid1
8	Concurrent process model, concurrent processes Communication among processes, synchronization among processes	CO-3	1. Explain concurrent process models.	LectureProgramSolving	Assignment 1/ Quiz1/ Mid1
9	Mid-Test 1				

10	Concurrent process model implementation, data flow model, real-time systems.	CO-3	 Define data flow model. Explain real time systems 	LectureDiscussionPPT	Assignment 2/ Quiz2/ Mid2
11	Need for communication interfaces, RS232 / UART, RS422 / RS485	CO-4	 What is Peripheral Interfacing? Write short notes on RS 232/UART. 	□ Lecture □ Discussion □ PPT	Assignment 2/ Quiz2/ Mid2
12	USB, Infrared, IEEE 1394 Firewire.	CO-4	 What are the features of USB? Explain about Infrared. 	LectureDiscussionPPT	Assignment 2/ Quiz2/ Mid2
13	Ethernet, IEEE 802.11, Bluetooth.	C0-4	 Write short notes on Ethernet. Explain Wireless LAN. 	LectureDiscussionPPT	Assignment 2/ Quiz2/ Mid2
14	Introduction, Automation, Synthesis, Parallel evolution of compilation and synthesis.	CO-5	1.Define Synthesis 2.What is Parallel evolution of compilation and synthesis.	LectureDiscussion	Assignment 2/ Quiz2/ Mid2
15	Logic Synthesis, RT synthesis, Behavioral Synthesis	CO-5	Explain RT Synthesis What is logic synthesis	LectureDiscussion	Assignment 2/ Quiz2/ Mid2
16	Systems Synthesis and Hardware/ Software Co-Design ,Verification	CO-5	 What is verification? Describe hardware/ software co-design 	LectureDiscussion	Assignment 2/ Quiz2/ Mid2
17	Hardware/Software co-simulation, Reuse of intellectual property cores	CO-5	 What is hardware/Softwar co-simulation? Write notes on IP cores. 	□ Lecture □ Discussion	Assignment 2/ Quiz2/ Mid2
18	Mid-Test 2				
19/20	END EXAM				