to be submitted by the Faculty of B.Tech/M.Tech/MCA I semester on or before 11.10.2013 to bhanucvk@gvpce.ac.in and <u>yadavalliraghu@yahoo.com</u>

SCHEME OF COURSE WORK

Course Details:

Course Title	:Advanced Heat T	ransfer					
Course Code	: 13ME2303		C L P	: 4 0	3		
Program:	: M.Tech.	: M.Tech.					
Specializatio	: Mechanical Engineering						
n:							
Semester	:I						
Prerequisites	: Fluid Mechanics and basic Heat Transfer						
Courses to which it is a : Elective-II: Design of Thermal Equipment							
prerequisite	(13ME2315)						

Course Outcomes (COs):

At the end of the course the student will be able to

1	explain the general heat conduction equation, fin heat transfer, solution of two- dimensional steady state equation, and conduction shape factor
2	describe the solution of transient heat conduction equation by analytical methods and by Heisler's charts, and heat transfer in laminar flow over a flat plate
3	Analyze heat transfer in laminar and turbulent flows through pipe, liquid metal and high speed flow, describe pool and flow boiling
4	compare external and in-tube film condensation, and explain working of a heat pipe
5	explain radiation properties and apply radiation networks to calculate radiation exchange between surfaces, and gas radiation

Program Outcomes (POs):

PO1:Exhibit in-depth knowledge in thermal engineering specialization

PO2: Think critically and analyze complex engineering problems to make creative advances in theory and practice

PO3: Solve problem, think originally and arrive at feasible and optimal solutions with due consideration to public health and safety of environment

PO4: Use research methodologies, techniques and tools, and contribute to the development of technological knowledge

PO5: Apply appropriate techniques, modern engineering and software tools to perform modeling of complex engineering problems knowing the limitations

Model Template for Scheme of Course Work

to be submitted by the Faculty of B.Tech/M.Tech/MCA I semester on or before 11.10.2013 to bhanucvk@gvpce.ac.in and <u>yadavalliraghu@yahoo.com</u>

PO6: Understand group dynamics, contribute to collaborative multidisciplinary scientific research

PO7: Demonstrate knowledge and understanding of engineering and management principles and apply the same with due consideration to economical and financial factors

PO8: Communicate complex engineering problems with the engineering community and society, write and present technical reports effectively

PO9: Engage in life-long learning with a high level of enthusiasm and commitment to improve knowledge and competence continuously

PO10: Exhibit professional and intellectual integrity, ethics of research and scholarship and will realize his/her responsibility towards the community

PO11: Examine critically the outcomes of his/her actions and make corrective measures without depending on external feedback

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO-1	S	S										
CO-2	S	Μ	S		S	Μ						
CO-3	S	Μ							Μ			
CO-4	S	S									Μ	
CO-5	S	S	S									

Course Outcome Versus Program Outcomes:

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods:	Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam
------------------------	--

Teaching-Learning and Evaluation

Wee Topic / CONTENTS k	Course Outcome s	Sample questions	Teaching- Learning Strategy	Assessm ent Method & Schedule
---------------------------	------------------------	------------------	-----------------------------------	---

to be submitted by the Faculty of B.Tech/M.Tech/MCA I semester on or before 11.10.2013 to bhanucvk@gvpce.ac.in and <u>yadavalliraghu@yahoo.com</u>

1	Heat conduction equation in Cartesian, cylindrical, and spherical coordinates	CO-1	1. Derivation of heat conduction equation in Cartesian, cylindrical, and spherical coordinates 2. Transform from Cartesian to cylindrical coordinates	Lecture Derivations	Assignm ent (Week 2 - 4)
2	Heat transfer from extended surfaces – infinitely long fin	CO-1	 Derivation of heat transfer from extended surfaces Find effectiveness and efficiency of fin 	Lecture / Discussion Problem solving	Mid- Test 1 (Week 9)
3	rectangular and triangular fins – boundary conditions - fin performance.	CO-1	Derive equation for temperature distribution in triangular fins	Lecture Problem solving	Quiz (Week 2 - 4)
4	Steady state two-dimensional heat conduction equation – boundary conditions	CO-1	Derive equation for steady state two- dimensional heat conduction equation. Specify the boundary conditions	Lecture Derivations and analysis	
5	numerical solution by finite difference method.	CO-2	Obtain numerical solution by finite difference method.	Lecture Problem solving	
6	Lumped heat capacity system - transient heat conduction in a semi-infinite rod	CO-2	Derive equation for temperature distribution in transient heat conduction in a semi- infinite rod	Lecture Problem solving	
7	transient heat conduction in an infinite plate with convection boundary condition at the surface	CO-2	Derive equation for temperature distribution in transient heat conduction in an infinite plate with convection boundary condition at the surface	Lecture Problem solving	

Model Template for Scheme of Course Work

to be submitted by the Faculty of B.Tech/M.Tech/MCA I semester on or before 11.10.2013 to bhanucvk@gvpce.ac.in and <u>yadavalliraghu@yahoo.com</u>

8	Transient heat conduction in an infinite cylinder exposed to a convection environment - transient heat conduction in a sphere - Heisler's charts	CO-2	Problems on transient heat conduction in a sphere using Heisler's charts	Lecture Problem solving	
9	Laminar boundary layer on a flat plate – Von Karman analysis through integral equations for hydrodynamic boundary layer thickness	CO-2	Obtain the equation for hydrodynamic boundary layer in laminar flow on a flat plate by Von Karman analysis through integral equations for hydrodynamic boundary layer thickness	Lecture Problem solving	
10	energy balance equation and thermal boundary layer on a flat plate, turbulent boundary layer – mixing length and eddy viscosity	CO-2	energy balance equation and thermal boundary layer on a flat plate, turbulent boundary layer – mixing length and eddy viscosity	Lecture Discussion Problem solving	Mid- Test 2 (Week 18)
11	Heat transfer in laminar tube flow	CO-3	Heat transfer in laminar tube flow	Lecture Problem solving	Case Study (Week 10 - 14)
12	turbulent flow in a tube, heat transfer in high speed flow	CO-3	turbulent flow in a tube, heat transfer in high speed flow	Lecture Problem solving	
13	liquid metal heat transfer – high speed heat transfer for a flat plate	CO-3	liquid metal heat transfer – high speed heat transfer for a flat plate	Lecture Problem solving	
14	Regimes of saturated pool boiling – Rohsenow's correlation for nucleate pool boiling	CO-3	Explain various regimes of saturated pool boiling Problems using Rohsenow's correlation for nucleate pool boiling	Lecture Problem solving	
15	flow boiling: external flow boiling, internal flow boiling, two-phase flow regimes	CO-3	Describe external flow boiling, internal flow boiling, two- phase flow regimes	Lecture Problem solving	Seminar (Week 15)

to be submitted by the Faculty of B.Tech/M.Tech/MCA I semester on or before 11.10.2013 to bhanucvk@gvpce.ac.in and <u>yadavalliraghu@yahoo.com</u>

16	Nusselt's analysis for laminar film condensation on a vertical plate – condensate Reynolds number – film condensation inside horizontal tubes	CO-4	Explain Nusselt's analysis for laminar film condensation on a vertical plate	Lecture Problem solving
17	Heat pipe components, materials and working fluids – Applications of heat pipe – Cooling of electronic components	CO-4	Describe the working of heat pipe at pipe and its applications	Lecture Demonstratio n Problem solving
18	Radiation properties – Kirchhoff's law – Wien's displacement law – Planck's distribution law – black body - gray body. Radiation heat exchange between black isothermal surfaces - radiation shape factor, Irradiation-radiosity- space resistance – surface resistance – radiation networks – radiation between two hot plates enclosed by a room	CO-5	Explain radiation properties such as Kirchhoff's law, Wien's displacement law , Planck's distribution law Problems using radiation shape factor, Irradiation– radiosity– space resistance – surface resistance – radiation networks	Lecture Problem solving
19/2 0	END EXAM			