SCHEME OF COURSE WORK

Faculty: A.Nagamalli

Asst. Professor, ECE.

Course Details:

Course Title	: VLSI TECHNOLO	GY AND DESIGN							
Course Code	: 13EC2202		L	T	P	C	: 4	0 0	3
Program:	:M.Tech (VLSI DES)	:M.Tech (VLSI DESIGN AND EMBEDDED SYSTEMS)							
Specialization:	: Electronics and Con	: Electronics and Communication Engineering							
Semester	ster : I SEM								
Prerequisites	VLSI Design								
Courses to which it is a prerequisite : LOW POWER VLSI									

Course Outcomes (COs):

se Ou	acomes (COs).
1	Distinguish different IC technologies and analyze basic electrical properties of MOS,
	CMOS, & BI CMOS circuits
2	Design layouts for logic Circuits
3	Analyze the concepts of alternate gate circuits, interconnect delays, Gate and Network
	Testing
4	Outline the concepts of memory cells, clocking disciplines, power optimization, design
	validation and Testing.
5	Acquire knowledge of floor-plan methods, High level synthesis, CAD systems and
	Methodologies for chip design

Course Outcome Vs Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	S	S	S	S	S	S			S		S
CO ₂	S	S	S	M	S	S			S		S
CO3	M	S	S	S	S	S			M		
CO4	S	S	S	S	S	S	S		S		S
CO5	M	M	S	M	S	M			S		S

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods:	Assignment / Seminar / Case Study / Mid-Test / End Exam
---------------------	---

Teaching-Learning and Evaluation

Week	Topic / Contents	Course Outcomes	Sample questions	Teaching- Learning Strategy	Assessment Method & Schedule
1	Review of Microelectronics:MOS, CMOS,BICMOS Technology trends and projections	CO-1	1. Explain Masking steps to fabricate a MOS transistor. Explain Masking steps to fabricate a CMOS/ BICMOS transistor.	□ Lecture □ Demo	Mid-I/ Assignment -I
2	Ids-Vds relationships, Threshold voltage V _t ,G _m ,G _{ds} and W _o	CO-1	1.Derive an expression to give relation between V _{DS} , I _{DS} . 2.Discuss about the threshold voltage in a MOSFET. 3.Explain the dependency of drain current on different material and electrical characteristics.	Lecture Problem solving	Mid-I/ Assignment -I
3	Pass Transistor, MOS,CMOS and BICMOS Inverters,Z _{pu} /Z _{pd} , MOS transistor circuit model, Latch-up in CMOS circuits. UNIT-2 Layout Design And Tools, transistor structures, Wires and Vias, Scalable Design Rules	CO-1	 Write a short note on λ-based design rules. Explain about different contacts and vias. 	□ Lecture	Mid-I/ Assignment -I
4	Layout Diagrams for NMOS and CMOS Inverters and Gates, Layout Design tools Wires and vias	CO-2	Draw the stick and layout for NMOS Inverter, p-well CMOS inverter. 2 a) Write a short note on wires and vias. Explain about the parasitic capacitances.	- Lecture	Mid-I/ Assignment -I
5	UNIT-3 Logic Gates And Combinational Logic Networks, Static complementary gates, Switch logic, Alternative gate circuits.	CO-3	1. a) Explain about complimentary CMOS gates. Describe about logic levels. b) Draw and explain the logic circuit and stick diagram for	□ Lecture	Mid-I/ Assignment -I

			F=(A+BC+ABD)' using Complementary CMOS logic.		
6	low power gates ,Resistive and inductive interconnect delays	CO-3	1.a) Discuss the dynamic behavior of CMOS transistor and its capacitances.	⁻ Lecture	Mid-I/ Assignment -I
7	Layouts Simulation, Network delay	CO-3	1.a) Write a short note on delay and Transitions.b) Obtain the expression for delay time using RC equivalent of CMOS.	⁻ Lecture	Mid-I/ Assignment -I
8	Interconnect design	CO-3	1.Explain the different interconnect delay models and obtain the expression for delay time in each case.	⁻ Lecture	Mid-I/ Assignment -I
9	MID-I	CO-1 & CO-2			MIDTEST-I
10	Power optimization, Switch logic networks, Gate and network testing	CO-3	1. Explain the methods for optimization of power. What is the method for designing Power networks?	□ Lecture □ Discussion	Mid-2/ Assignment -2
11	UNIT-4 Sequential Systems Memory cells and arrays, Clocking disciplines Design, Power optimization	CO-4	1.Explain about the structural specification of sequential machines with state transition graphs and state tables?	□ Lecture □ Discussion	Mid-2/ Assignment -2
12	Design validation and testing	CO-4	 What are the various methods for testing stuck at faults? Explain the methods for testing faulty gate in a combinational network. 	□ Lecture □ Discussion	Mid-2/ Assignment -2
13	UNIT-5 Floor Planning and Chip Design Floor planning methods Off- chip connections High- level synthesis	CO-5	1) Briefly explain about floor planning methods.	LectureDiscussion	Mid-2/ Assignment -2
14	Architecture for low power, SOCs and	CO-5	1. Write a short note on high level synthesis and	□ Lecture □ Discussion	Mid-2/ Assignment -2

	embedded CPUs, Architecture testing,		explain how SOC architectures will be tested?		
15	Introduction to CAD systems(algorithms) and chip design, Layout synthesis and analysis,	CO-5	Describe the Chip design methodology with the help of design flow block diagram.	□ Lecture □ Discussion	Mid-2/ Assignment -2
16	Scheduling and binding, Hardware/software co- design	CO-5	Explain the concept of Hardware/software codesign in VLSI systems.	LectureDiscussion	Mid-2/ Assignment -2
17	Chip design methodologies-a simple design example. Discussion previous papers, revision, practices.	CO-5	Describe the Chip design methodology with the help of design flow block diagram.	□ Presentatio n □ Discussion	Mid-2/ Assignment -2
18	MIDEXAM-II				MID TERM-II
19/20	END EXAM				