SCHEME OF COURSE WORK

Course Details:

Course Title :	Transform Techniques					
Course Code :	15EC2104	LTPC	: 3 0 3			
Program:	M.Tech.					
Specialization :	Communications Engineering and Signal Processing					
Semester :	1					
Prerequisites : Signals and Systems, Digital Signal Processing						
Courses to which it is a prerequisite :						

Course Outcomes (COs):

1	Comprehend the various two dimensional transforms and their applications
2	Analyze and compare the different image transforms.
3	Comprehend the time-frequency analysis of transforms.
4	Design and Analyze the continuous and discrete wavelet transforms.
5	Analyze the orthogonal wavelets and Multi Resolution Analysis of transforms.

Course Outcome Versus Program Outcomes:

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO-1	М										
CO-2	М										
CO-3	М	М	S								
CO-4	S	S	М	S	S						
CO-5	S	S		М	М	S		М	S	Μ	М

S- Strongly correlated, M- Moderately correlated, Blank- No correlation

Assessment Methods: Assignment/Quiz/Seminar/Case Study/Mid Test/End Exam

Teaching-Learning and Evaluation

Week	TOPIC/CONTENTS	Course	Sample Questions	TEACHING-	Assessment
		Outcomes		LEARNING	Method and
				STRATEGY	Schedule
1	Introduction, need for	CO-1	1. What is the need	 Lecture/ 	Assignment
	transforms, concept of Two	&CO-2	for Image		I/Quiz-I/Mid-
	Dimensional Fourier		transforms?	Discussion/	I
	transforms		2. Define 2D DFT and	Problem	
			IDFT.	solving	
2	Two Dimensional Fourier	CO-1	1. State and prove	 Lecture/ 	
	transforms-properties & their	&CO-2	R,S,T Properties of	Discussion	Assignment
	significance		2D DFTs.	Problem	I/Quiz-I/Mid-
			2. Define and prove	solving	1

			Convolution Theorem			
3	Energy &Power spectral density functions, Discrete Cosine Transform and applications	CO-1 &CO-2	1. Define ESD and PSD functions. 2. Obtain the kernel coefficients of1D DCT for N=8.	0	Lecture/ Discussion Problem solving	Assignment I/Quiz-I/Mid- I
4	Walsh transform, Hadamard transform, Haar transform	CO-2	 Distinguish between Walsh and Hadamard Transforms. Obtain Haar transform matrix for N=8. 	0	Lecture/ Discussion Problem solving	Assignment I/Quiz-I/Mid- I
5	Slant transform, KL transform, Singular Value Decomposition	CO-2	 Obtain Slant transform matrix for N=8. Explain the principle of SVD. 	0	Lecture/ Discussion Problem solving	Assignment I/Quiz-I/Mid- I
6	Hough Transforms, Radon Transforms	CO-2	 Explain about Hough Transforms. Explain the principle of Radon transforms. 	0	Lecture/ Discussion	Assignment I/Quiz-I/Mid- I
7	Comparison of different Image transforms	CO-2	1.Compare various Image transform with respect to their advantages, disadvantages and applications	0	Lecture/ Discussion	Assignment I/Quiz-I/Mid- I
8	Window function, Short Time Fourier transform, Properties of STFT	CO-3	 Define Window function. Explain the properties of STFT. 	Lecture	2	Assignment I/Quiz-I/Mid- I
9 10	Mid-Test 1 Discrete Short Time Fourier Transform, The Origin of Wavelets, Continuous Wavelet Transforms(CWT)	CO-3	1. Define Discrete STFT. 2.Define CWT.	0	Lecture/ Discussion/ Problem solving	Assignment II/Quiz- II/Mid-II
11	The Uncertainty Principle and Time frequency Tiling, Properties of wavelets in CWT	CO-3	 Explain about Uncertainty principle of CWT. Explain the properties of wavelets in CWT. 	0	Lecture/ Discussion	Assignment II/Quiz- II/Mid-II
12	Introduction to the Discrete Wavelet Transforms, Continuous versus Discrete Wavelet Transform	CO-4	 Define DWT. Distinguish between CWT and DWT. 	0	Lecture/ Discussion	Assignment II/Quiz- II/Mid-II
13	Haar Scaling and Wavelet	CO-4	1. Explain about Haar	0	Lecture/	Assignment

	functions and Function space,		scaling and wavelet		Discussion	II/Quiz-
	Orthogonality of Translator		2 Define function			11/1/11/11
	Critic Crace Nested Craces		Z. Define function			
	Function space, Nested spaces		Space.		/	
14	Scales Haar wavelet Functions	CO-4	1. Define Daubechies	0	Lecture/	Assignment
	and Orthogonal wavelets,		wavelet.		Discussion	II/Quiz-
	Support of Wavelet system,		2.What are the			II/Mid-II
	Daubechies Wavelets,		applications of DWT.			
	Applications					
15	Refinement Relation for	CO-5	1. Explain about	0	Lecture/	Assignment
	Orthogonal Wavelet Systems,		relation for		Discussion	II/Quiz-
	Restrictions on Filter		Orthogonal wavelet			II/Mid-II
	Coefficients		systems.			
			2. What are the			
			restrictions on filter			
			coefficients?			
16	Signal Decomposition and	CO-5	1. Explain about	0	Lecture	Assignment
	Relationship with Filter Banks.		signal decomposition	_	Discussion/	II/Quiz-
	Frequency Response, Signal		and relationship with		Problem	II/Mid-II
	Reconstruction Perfect		filter hanks		solving	
	Matching Filters		2 Explain about		Solving	
	Watching Fitters		perfect matching			
			filtors			
		l	milers.			l
47	Multi Decelution Analysis	CO 5	1 Define and Emploin	[Lesture / die	A :
11/	I IVIUITI-RESOLUTION ANALYSIS	00-5	L L Define and Explain	0	Lecture/dis	Assignment

17	Multi-Resolution Analysis	CO-5	1. Define and Explain	0	Lecture/dis	Assignment
	(MRA), Two Scale Relations,		about MRA.		cussion/	II/Quiz-
	Ortho Normal Wavelets and		2. Write short notes		problem	II/Mid-II
	Their Relationship to Filter		on PRQMF Filter		solving	
	Banks, PR QMF Filter Banks		banks.			
18	Mid-Test 2	CO-3,4,5				
19/20	END EXAM	ALL CO'S				