SCHEME OF COURSE WORK

Course Details:

Course Title	SOLID STATE CONTROL OF AC DRIVES					
Course Code	:15EE2211					
Program:	: M.Tech.					
Specialization:	: Power Electronics and Drives					
Semester	:II Semester					
Prerequisites	: Power Electronics & Power Electronic Drives					

Course Outcomes (COs): At the end of the course students will be able to understand

Explain the Operation of induction motor and analyze speed control of AC Drives by VSI fed drives
Explain the Operation of induction motor and analyze speed control of AC Drives by VSI fed

2 Analyze speed control of AC Drives by CSI fed drives and by slip power recovery drives

3 Analyze vector control of Induction motors

4 Analyze various control schemes to control speed of synchronous motor drives

5 Analyze vector control of PMSM drives

Program Outcomes (POs):

Pr	Program Outcomes (POS):								
1	Develop in depth knowledge in the areas of "Static Power Electronics Converters", "Power Electronic Converter								
-	fed Electrical Drives" and "Power Quality"								
2	Apply soft computing techniques for Power Electronic Systems and Electric Drives.								
3	Understand large scale Power Electronic Converter Systems, Electric Drives and issues involved through Modeling, Analysis and Simulation.								
4	Apply present day techniques and tools to solve Power electronic and electric drives problems relevant to India and other countries.								
5	Use state-of-the-art simulation tools such as PLEXIM, SABER, OPAL-RT Lab, DSPACE, MULTISIM, LABVIEW and other Tools.								
6	Contribute positively to collaborative and multidisciplinary research to achieve common goals.								
7	Demonstrate knowledge and understanding of power engineering and management principles and apply the same for efficiently carrying out projects with due consideration to economical and financial factors.								
8	Demonstrate knowledge and understanding of power engineering and management principles and apply the same for efficiently carrying out projects with due consideration to economical and financial factors.								
9	Recognize the need for life-long learning and have the ability to do it independently.								
10	Acquire knowledge on social issues and shall contribute to the community for sustainable development.								
11	Predict and examine critically the outcomes of actions, apply corrective measures subsequently and move forward positively through a self corrective approach.								
Co	Course Outcome Versus Program Outcomes:								
	CO_{2} DO1 DO2 DO2 DO4 DO5 DO(DO7 DO9 DO0 DO10 DO11								

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO-1	S	Μ	S	Μ	S	Μ	М	Μ	М	Μ	Μ
CO-2	S	М	S	Μ	S	Μ	М	Μ	М	Μ	М
CO-3	S	М	S	М	S	Μ	М	Μ	М	Μ	М
CO-4	S	М	S	М	S	Μ	М	Μ	М	Μ	М
CO-5	S	М	S	М	S	Μ	М	Μ	М	М	М

S - Strongly correlated, M - Moderately correlated

Assessment Methods: Assignment / Seminar / Mid-Test / End Exam

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outcomes	Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule
1	Review of steady-state operation of Induction motor, Equivalent circuit analysis, torque-speed Characteristics.	CO-1	 (1) Draw the equivalent circuit of 3-Ø Induction Motor (2) Define different torques in 3phase induction motors from its slip torque characteristics for different rotor resistances 	 Lecture Discussion 	Assignment Mid Seminar
2	Scalar control- Voltage fed Inverter control-Open loop volts/Hz control, Speed control with slip regulation	CO-1	 (1) Explain open loop volts/Hz speed control with voltage fed inverter (2) Explain closed loop speed control with volts/Hz control and slip regulation 	 Lecture Discussion 	Assignment Mid Seminar
3	Speed control with torque and Flux control-Current controlled voltage fed Inverter Drive.	CO-1	 (1) Explain the Speed control with torque and Flux control-Current controlled voltage fed Inverter Drive. (2) Explain Current controlled Voltage Source Inverter drive for torque control of 3-Ø Induction Motor 	 Lecture Discussion 	Assignment Mid Seminar
4	Current-Fed Inverter control- Independent current and frequency control	CO-2	 (1) Explain the Current-Fed Inverter control of Induction Motor. (2)Explain the Independent current and frequency control of Induction Motor. (3)Explain independent current and frequency control for a Current Source Inverter fed 3-Ø induction motor. 	 Lecture Discussion 	Assignment Mid Seminar
5	Flux control in Current-Fed Inverter drive-Volts/Hz control of Current Fed Inverter drive- Efficiency optimization control by flux program	CO-2	Explain the flux control in Current- Fed Inverter drive of Induction Motor	LectureDiscussion	Assignment Mid Seminar
6	Slip Power Recovery Drives-Static Kramer Drive-Phasor Diagram-Torque Expression-Speed Control of Kramer Drive	CO-2	 (1)Explain the Static Kramer Drive (2)Explain the Static Rotor Power control by which the induction motor rotor power is fed back to the source for its speed control 	 Lecture Discussion 	Assignment Mid Seminar

7	Static Scherbius Drive Modes of	CO-2,3	Explain the Static	Lecture	Assignment
	Operation, Principles of Vector control	,	Scherbius Drive	Discussion	Mid
			What are various Modes of		Seminar
			Operation		
8	Direct vector control Implementation	CO-3	Explain the Principle of	Lecture	Assignment
	block diagram; estimation of flux.		vector control.	Discussion	Mid
			What are the various flux		Seminar
			vector estimation method		
9	Indirect Vector control,	CO-3	(1)Explain the indirect		Assignment
	Implementation block diagram Flux		vector control of Induction	Lecture	Mid
	weakening operation.		Motor.	Discussion	Seminar
			(2)Distinguish between		
			Direct Vector Control and		
			Indirect Vector Control		
	•	Mie	I-Test 1	•	•
10	Principles of Vector control,	CO-3	Explain the voltage model	Lecture	Assignment
	Derivation of Indirect Vector control,		feedback signal estimation	Discussion	Mid
	implementation block diagram;		with neat block diagram		Seminar
	estimation of flux, flux weakening				
	operation				
11	Direct vector control, implementation	CO-3	Explain the current model	^D Lecture	Assignment
	block diagram; estimation of flux, flux		feedback signal estimation	Discussion	Mid
	weakening operation		with neat block diagram		Seminar
12	Synchronous motor and its	CO-4	Explain the Various control	Lecture	Assignment
12	characteristics- Control strategies:	0-4	strategies of Synchronous	Discussion	Mid
	Constant torque angle control-power		motor		Seminar
	factor control		motor	-	Seminar
13	Constant flux control, torque per	CO-4	Explain Load commutated	Lecture	Assignment
	ampere control,		inverter fed synchronous	Discussion	Mid
	1		motor drive		Seminar
14	Load commutated inverter fed	CO-4	Explain the speed control of	Lecture	Assignment
	synchronous motor drive, motoring		Synchronous Motor when	Discussion	Mid
	and regeneration, phasor diagrams.		fed with L C I with phasor		Seminar
			diagram		
15	Characteristics of permanent magnet,	CO-5	Explain the Characteristics	Lecture	Assignment
	synchronous machines with permanent		of permanent magnet,	Discussion	Mid
	magnet,		synchronous machines with		Seminar
			permanent magnet		
16	Vector control of PMSM- Motor	CO-5	Explain vector controlled	Lecture	Assignment
	model and Drive system schematics		PM Synchronous motor	Discussion	Mid
			drive		Seminar
17	Control strataging of DMCM Mater	CO-5	Discuss various control		Aggionmost
17	Control strategies of PMSM- Motor model and Drive system schematics	0-5		 Lecture Discussion 	Assignment Mid
	model and Drive system schematics		strategies for control of	Discussion	
			PMSM drides		Seminar
18			Mid-Test 2		
10			END EXAM		