SCHEME OF COURSE WORK

Course Details:

Course Title	: SOLID STATE CONTROL OF AC DRIVES					
Course Code	: 13EE2215	L P	С	: 4 0 3		
Program:	: Master of Technology.					
Specialization:	: Power Electronics & Drives					
Semester	: II					
Prerequisites	: Power Electronics and Power Electronics and Drives					
Courses to which it is a prerequisite : Research						

Course Outcomes (COs): After Completion of the course the student will be able to

- 1 Understand the Operation and Control of AC Drives.
- 2 Model and Simulate the AC Drives.
- 3 Analyze different Scalar Control Methods
- 4 Analyze the current Fed Inverter control methods.
- 5 Analyze the equations governing the Vector Control

Program Outcomes (POs):

A graduate of Electrical & Electronics Engineering will be able to

	A gradade of Electrical & Electromes Eligineering will be able to					
1	Be a professional workforce in the area of Static Power Electronics Converters and power electronic converter fed electrical drives and power quality issues.					
2	Apply soft computing techniques for Power Electronic Systems and Electric Drives.					
3	Understand large scale Power Electronic Converter Systems, Electric Drives and issues involved through modeling, analysis and simulation.					
4	Apply present day techniques and tools to solve Power electronic and electric drives problems relevant to india and other countries.					
5	By using state-of-the-art simulation tools such as PLEXIM, SABER, OPAL-RT Lab, dSPACE, MULTISIM, LABVIEW and other Tools.					
6	Collaborate with industries on problems of relevance to them while formulating graduate dissertations.					
7	Improvise soft skills to students through seminars and organization of technology workshops, writing research/project reports as a part of graduate education					
8	Engage in life-long learning through professional bodies such as IEEE. Institute of Engineers (India),etc.					
9	Imbibe social responsibilities and ethical practices prevailing in a society through professional institutions.					

Course Outcome Versus Program Outcomes:

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO-1	S	S	S	S	S	М	S	S	W
CO-2	S	S	S	S	S	S	S	S	W
CO-3	S	S	М	S	S	S	S	S	W
CO-4	S	S	М	S	S	S	S	S	W
CO-5	S	S	S	S	W	W	W	W	W

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods:

Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outcomes	Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule			
1	Review of steady-state operation of Induction motor, Equivalent circuit analysis, torque-speed characteristics.	CO-1,2	Explain the equivalent Circuit of an Induction Motor. Explain the speed torque Characteristics of Induction Motor.	 Lecture through Black Board & LCD Discussion 	Seminar/Mid Test (Week 9-10)			
2	Scalar control- Voltage fed Inverter control- Open loop volts/Hz control-Speed control with slip regulation	CO-1,2.	Explain the Scalar methods of speed Control	 Lecture through Black Board & LCD Discussion 	Seminar/Mid Test (Week 9-10)			
3	Speed control with torque and Flux control- Current controlled voltage fed Inverter Drive.	CO-1,2	Explain the Speed control with torque and Flux control-Current controlled voltage fed Inverter Drive.	 Lecture through Black Board & LCD Discussion 	Seminar/Mid Test (Week 9-10)			
4	Current-Fed Inverter control-Independent current and frequency control	CO-1,2,3,4	Explain the Current-Fed Inverter control of Induction Motor. Explain the Independent current and frequency control of Induction Motor.	 Lecture through Black Board & LCD Discussion 	Seminar/Mid Test (Week 9-10)			
5	flux control in Current-Fed Inverter drive- Volts/Hz control of Current Fed Inverter drive- Efficiency optimization control by flux program,	CO-1,3,4	Explain the flux control in Current- Fed Inverter drive of Induction Motor Explain the Volts/Hz control of Current Fed Inverter drive Induction Motor Explain the Efficiency optimization control by flux program of Induction Motor.	 Lecture through Black Board & LCD Discussion 	Seminar/Mid Test (Week 9-10)			
6	Slip Power Recovery Drives-Static Kramer Drive-Phasor Diagram-Torque Expression-Speed Control of Kramer Drive	CO-1	What is Slip Power and how it is recovered? Explain the Static Kramer Drive- Phasor Diagram-Torque Expression-Speed Control of Kramer Drive	 Lecture through Black Board & LCD Discussion 	Seminar/Mid Test (Week 9-10)			
7	Static Scherbius Drive Modes of Operation	CO-1	Explain the Static Scherbius Drive Modes of Operation	 Lecture through Black Board & LCD Discussion 	Seminar/Mid Test (Week 9-10)			
8	Principles of vector control	CO-5	What is the Principle of vector control	 Lecture through Black Board & LCD Discussion 	Seminar/Mid Test (Week 9-10)			
9	9 Seminar by the Students							
10	0 Mid-Test 1							
11	Direct vector control, derivation of indirect vector control implementation block diagram of indirect vector control	CO-2,5	Explain the Direct vector control of Induction Motor. Explain and Derive indirect vector control of Induction Motor	 Lecture through Black Board & LCD Discussion 	Seminar/Mid Test (Week 17-18)			
12	estimation of flux, flux weakening operation	CO-2,5	How the estimation of flux, flux weakening operation is done in the Induction motor	 Lecture through Black Board & LCD Discussion 	Seminar/Mid Test (Week 17-18)			
13	Synchronous motor and its characteristics- Control strategies Constant torque angle control- power factor control, constant flux control, flux weakening operation	CO-1,2	Explain the operation of an Synchronous motor Explain the Various control strategies of Synchronous motor	 Lecture through Black Board & LCD Discussion 	Seminar/Mid Test (Week 17-18)			
14	Load commutated inverter fed synchronous motor drive, motoring and regeneration, phasor diagrams.	CO-1,2	Explain Load commutated inverter fed synchronous motor drive, motoring and regeneration, phasor diagrams	 Lecture through Black Board & LCD Discussion 	Seminar/Mid Test (Week 17-18)			
15	Characteristics of permanent magnet, synchronous machines with permanent magnet, vector control of PMSM- Motor model and control scheme.	CO-1,2,5	Explain the characteristics of permanent magnets Explain the operation and control Schemes of PMSM	 Lecture through Black Board & LCD Discussion 	Seminar/Mid Test (Week 17-18)			

			Explain the vector control of PMSM			
16	Variable Reluctance motor drives- Torque production in the variable reluctance motor - Drive characteristics and control principles Current control variable reluctance motor servo drive	CO-1,3	Explain the operation of VRM Explain the Drive characteristics and control principles of VRM Explain the control principles of Current control variable reluctance motor servo drive in detail	 Lecture through Black Board & LCD Discussion 	Seminar/Mid Test (Week 17-18)	
17	STUDENTS SEMINAR					
18	Mid-Test 2					
19/20	END EXAM					