SCHEME OF COURSE WORK

Course Details:

Course Title	POWER SYSTEM STABILITY						
Course Code	15EE2107	L	Р	С	3 0 3		
Program:	Master of Technology.						
Specialization:	Power System and Control Automation						
Semester	II						
Prerequisites	Power system operation and control, Electrical Machines						
Courses to which it is a prerequisite Research							

Course Outcomes (COs):

1	Understand and classify power system stability and analyze single machine connected
	to Infinite bus system.
2	Analyze response to small disturbances.
3	Apply Park's transformation to model synchronous machine.
4	Assess the excitation systems.
5	Analyze voltage stability

Program Outcomes (POs):

A graduate of Electrical & Electronics Engineering will be able to

1	Acquire in depth knowledge in the area of power system control and automation.
2	attain the ability to think critically and analyze complex engineering problems related to power system
	control and automation
3	Obtain the capability of problem solving and original thinking to arrive at feasible and optimal solutions
	considering societal and environmental factors
4	Extract information through literature survey and apply appropriate research methodologies, techniques
	and tools to solve power system problems.
5	Use the state-of-the-art tools for modelling, simulation and analysis of problems related to power
	systems
6	Attain the capability to contribute positively to collaborative and multidisciplinary research to achieve
	common goals
7	Demonstrate knowledge and understanding of power system engineering and management principles
	and apply the same for efficiently carrying out projects with due consideration to economical and
	financial factors.
8	Communicate confidently, make effective presentations and write good reports with engineering
	community and society
9	Recognize the need for life-long learning and have the ability to do it independently
10	Become socially responsible and follow ethical practices to contribute to the community for sustainable
	development of society.
11	Independently observe and examine critically the outcomes of his actions and reflect on to make
	corrective measures subsequently and move forward positively by learning through mistakes

Course Outcome Versus Program Outcomes:

COs\POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO-1	S	S	S	S	S	Μ	W	М	Μ	W	W
CO-2	S	S	S	S	S	Μ	S	S	W	Μ	Μ
CO-3	S	S	S	S	S	Μ	Μ	W	W	W	Μ
CO-4	S	S	S	М	Μ	W	W	W	W	W	W

S - Strongly correlated, M - Moderately correlated, W-Weakly correlated

Teaching-Learning and Evaluation

Week	COPIC / CONTENTS Course Outcomes Sample questions		TEACHING- LEARNING STRATEGY	Assessment Method & Schedule	
1	Definition of stability, Classification of stability, Rotor angle stability, frequency stability, voltage stability, mid-term and long-term stability,	CO-1	Explain the classical model of one machine connected to infinite bus.	 Lecture through Black Board & LCD Discussion 	Seminar/Mid Test (Week 8 -9)
2	elementary model, swing equation, power angle equations,	CO-1	Derive swing equation	 Lecture through Black Board & LCD Discussion 	Seminar/Mid Test (Week 8 -9)
3,4	Natural frequency of oscillations, single machine infinite bus system, equal area criterion, classical model of multi machines system.	CO-2	Derive classical model of multi machines system.	 Lecture through Black Board & LCD Discussion 	Seminar/Mid Test (Week 8 -9)
5,6	Response to small disturbances: The unregulated synchronous machine, modes of oscillations of an unregulated multi machine system,	CO-1,2	Discuss about the stability of unregulated synchronous machine using swing equation.	 Lecture through Black Board & LCD Problem solving 	Seminar/Mid Test (Week 8 -9)
7	Regulated synchronous machine,	CO-2		 Lecture through Black Board & LCD 	Seminar/Mid Test
8	Distribution of power impacts.	Mid Test	1	Problem solving	(Week 8 -9) Week 9
9	Synchronous Machine: Parks	CO-3	Derive voltage equations of	Lecture through	Seminar/Mid
	transformation, Flux Linkage Equations, voltage equations,		synchronous machine using parks transformation	Black Board & LCD Discussion	Test (Week 15-16)
10	Equivalent circuit of synchronous machine, the flux linkage state-space model- voltage equations, torque equation.	CO-3	Give a detailed dynamic performance comparison of SVC & STATCOM	 Lecture through Black Board & LCD Discussion 	Seminar/Mid Test (Week 15-16)
11	Excitation Systems: Simplified view of excitation control, control configuration, Typical Excitation configurations- primitive systems, excitation control systems with alternator and with compound, Voltage regulators. Computer representation of excitation systems-Types	CO-4	Derive the approximate model of the complete exciter.	 Lecture through Black Board & LCD Discussion 	Seminar/Mid Test (Week 15-16)
12	Effect of Excitation on Stability: Effect of excitation on - Power limits, Transient stability, Dynamic stability. Approximate excitation system representation, supplementary stabilizing signals, block diagram of a simplified model of a complete system.	CO-5	Derive the block diagram of simplified model	 Lecture through Black Board & LCD Discussion 	Seminar/Mid Test (Week 15-16)
13	Voltage Stability: Introduction, Comparison of angle and voltage stability, reactive power flow and voltage collapse,	CO-5	Compare angle and voltage stability	 Lecture through Black Board & LCD Discussion 	Seminar/Mid Test (Week 15-16)

14	Mathematical formulation, voltage stability analysis, prevention of voltage collapse.			 Lecture through Black Board & LCD Discussion 			
15	STUDENTS SEMINAR						
16	Mid-Test 2						
	END EXAM						