SCHEME OF COURSE WORK

Course Details:

se Detalls.						
Course Title	: Power System Optimization					
Course Code	:13EE2112	LPC	:4 0 3			
Program:	: M.Tech.					
Specialization:	: Power System and Control Automation					
Semester	: II					
Prerequisites : Optimization Techniques, Economic Load Dispatch						
Courses to which	ch it is a prerequisite : Power S	vstem Optimization				

Course Outcomes (COs):

1	After completion of the course, the student will be able to solve economic load dispatch							
	problem by using newton rapshon method and to calculate power transmission loss							
	coefficients in power systems by using classical method.							
2	After completion of the course, the student will be able to solve economic load dispatch							
	problem in thermal generating systems by using gradient Method.							
3	After completion of the course, the student will be able to solve optimal hydrothermal							
	scheduling of short range fixed and variable problems in power system.							
4	After completion of the course, the student will be able to solve Multi-objective							
	optimization problems of any utility or industry.							
5	After completion of the course, the student will be able to use evolutionary programming							
	for solving generation scheduling problem.							

Program Outcomes (POs):

A graduate of M.Tech (Power System Automation and Control) will be able to

1	Acquire in depth knowledge in the area of power system and control automation.
2	Analyze the models with respect to any kind of problem on hand and try to solve related to power system
	control and automation
3	Develop the capability of problem solving and original thinking to arrive at feasible and optimal solutions
	considering societal and environmental factors
4	Interpret and demonstrate sufficient knowledge base, to apply the techniques and tools either individually
	or in groups to solve power system problems.
5	Select state-of-the-art tools for modeling, simulation and analysis of problems related to power systems.
6	Recognize positively any collaborative and multidisciplinary research to achieve common goals.
7	Demonstrate knowledge and understanding of power system engineering and management
	principles and apply the same for efficiently carrying out projects with due consideration to
	economical and financial factors.
8	Communicate confidently, make effective presentations and write good reports to engineering community
	and society.
9	Recognize the need for life-long learning and have the ability to do it independently.
10	Understand Social responsibilities and follow ethical practices to contribute to the community for
	sustainable development.
11	Predict and self examine critically the outcomes of actions, reflect on to make corrective measures and
	move forward positively.

Course Outcome Versus Program Outcomes:

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO-1	М			S	S		S				

CO-2	Μ	S	S	S		S		
CO-3	Μ	S		S		М		
CO-4	Μ		S	S				
CO-5	Μ			S				

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods:	Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam
---------------------	--

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outcomes	Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule
1	Introduction Generator Operating Cost Economic Dispatch Problem on a Bus Bar - Optimal Generation Scheduling.	CO-1	For a 3 generator system, the fuel cost coefficients and the operating generator limits are given. The B-coefficients for transmissions loss are given. Determine the economic schedule for loads 160 MW and 210 MW.	 Lecture Discussion Problem solving 	Assignment (Week 2 - 4)
2	Economic Dispatch Using Newton - Raphson Method - Economic Dispatch Using the Approximate Newton-Raphson Method - Economic Dispatch using Efficient Method.	CO-1	Determine the economic schedule to meet the demand of 150 MW using Newton Raphson Method.	 Lecture Discussion Problem solving 	Mid-Test 1 (Week 9)
3	Classical Method to Calculate Loss Coefficient Loss Coefficients Calculation Using Y BUS Loss Coefficients Using Sensitivity Factors	CO-1	Use the classical method to determine the B-coefficients for a 5-bus system. Bus 5 is taken as the slack bus. The series impedance and line charging of each line is given.	 Lecture Discussion Problem solving 	Quiz (Week 2 - 4)
4	Transmission Loss Coefficients Transmission Loss Formula: Functions of Generation and Loads.	CO-1	Consider the given 5-bus system and obtain the optimum schedule.	 Lecture Discussion Problem solving 	
5	Economic Dispatch Using Exact Loss Formula - Economic Dispatch Using Loss Formula which is a function of Real and Reactive Power	CO-2	Consider the given 5-bus system find the economic generation schedule using Exact Loss Formula.	 Lecture Discussion Problem solving 	
6	Economic Dispatch for Active and Reactive Power Balance - Evaluation of Incremental Transmission Loss - Economic Dispatch Based on Penalty Factors.	CO-2	Consider the given 5-bus system and obtain the optimum generation schedule.	 Lecture Discussion Problem solving 	
7	Optimal Power Flow Based on Newton Method - Optimal Power	CO-2	Consider the given 3-bus system find the economic generation schedule.	 Lecture Discussion Problem solving 	

	Flow Based on Gradient Method.				
8	Introduction - Hydro Plant Performance Models - Short-Range Fixed-Head Hydrothermal Scheduling - Newton-Raphson Method for Short-Range Fixed- Head Hydrothermal Scheduling	CO-3	A hydro thermal system is given which consists of one thermal and one hydro generating station. The operating cost of the thermal station and the rate of discharge of hydro generating station is given. Find the optimum generation schedule.	 Lecture Discussion Problem solving 	
9	Mid Test-1				
10	ApproximateNewton-RaphsonShort-RangeFixed-HeadHydrothermalSchedulingShort-RangeVariable-HeadHydrothermalSchedulingProblem-ClassicalMethodVariable-Head	CO-3	Consider a fundamental hydro thermal system. The objective is to find the optimum generation schedule for a typical day. Incremental fuel cost of the thermal plant is given.	 Lecture Discussion Problem solving 	
11	Approximate Newton-Raphson Method for Short-Range Variable- Head Hydrothermal Scheduling Problem - Hydro Plant Modelling for Long-Term Operation - Long- Range Generation Scheduling of Hydrothermal Systems	CO-3	Calculate the fuel cost of a generating station.	 Lecture Discussion Problem solving 	
12	Introduction - Multi-objective Optimization- State-of-the-Art - Fuzzy Set Theory in Power Systems, The surrogate Worth Trade-off (SWT).	CO-4	Write an algorithm for SWT.	 Lecture Discussion Problem solving 	
13	Approach for Multi-objective Thermal Power Dispatch Problem - Multi-objective Thermal Power Dispatch Problem- Weighting Method	CO-4	Write an algorithm for non-inferior solution for multi-objective dispatch.	 Lecture Discussion Problem solving 	Assignment (Week 2 - 4)
14	Multi-objective Dispatch for Active and Reactive Power Balance - Multi-objective Short-Range Fixed- Head Hydro-thermal Scheduling- Approximate Newton-Raphson Method	CO-4	Write an algorithm for non-inferior solution for multi-objective dispatch using Newton-Raphson approximate method.	 Lecture Discussion Problem solving 	Quiz (Week 2 - 4)
15	Introduction - Fitness Function - Genetic Algorithm Operators - Random Number Generation - Economic Dispatch Problem - Genetic Algorithm Solution Methodology - Genetic Algorithm Solution Based on Real Power Search.	CO-5	Find the value of x represented by 1100110001101, a string of 12 binary digits. The value of x lies between 2.5 to 10	 Lecture Discussion Problem solving 	Mid-Test 2 (Week 18)
16	Economic Dispatch with valve point loading, Economic dispatch with Ramp Rate Limits and Prohibited Operating Zones –	CO-5	Explain about Economic dispatch with Ramp Rate limits.	 Lecture Discussion Problem solving 	

	Evolutionary search method for Economic Dispatch.			
17	Evolutionary Programming for Economic Dispatch – I & II – Anti- Predatory Particle Swarm Optimization – Differential Evolution for Economic Dispatch – Real Coded Genetic Algorithm.	Explain about Evolutionary Programming for Economic Dispatch - I	 Lecture Discussion Problem solving 	
18	Mid Test-2			
19/20	END EXAM			