SCHEME OF COURSE WORK

Course Details:

Course Title	: Power System Optimization					
Course Code	:13EE2112	L P C	:4 0 3			
Program:	: M.Tech.					
Specialization:	: Power System Control and Automation					
Semester	: II					
Prerequisites	rerequisites : Optimization Techniques, Economic Load Dispatch					
Courses to which it is a prerequisite : Power System Optimization						

Course Outcomes (COs):

1	After completion of the course, the student will be able to solve economic load dispatch problem in power system.
2	After completion of the course, the student will be able to solve multi objective
	optimization problems of any utility or industry.
3	After completion of the course, the student will be able to use evolutionary
	programming for solving generation scheduling problem.

Program Outcomes (POs):

A graduate of M.Tech (Power System Automation and Control) will be able to

	<u> </u>
1	Acquire in depth knowledge in the area of power system control and automation.
2	attain the ability to think critically and analyze complex engineering problems related to power system
	control and automation
3	Obtain the capability of problem solving and original thinking to arrive at feasible and optimal solutions
	considering societal and environmental factors
4	Extract information through literature survey and apply appropriate research methodologies, techniques
	and tools to solve power system problems.
5	Use the state-of-the-art tools for modeling, simulation and analysis of problems related to power
	systems
6	Attain the capability to contribute positively to collaborative and multidisciplinary research to achieve
	common goals
7	Demonstrate knowledge and understanding of power system engineering and management principles
	and apply the same for efficiently carrying out projects with due consideration to economical and
	financial factors.
8	Communicate confidently, make effective presentations and write good reports with engineering
	community and society
9	Recognize the need for life-long learning and have the ability to do it independently
10	Become socially responsible and follow ethical practices to contribute to the community for sustainable
	development of society.
11	Independently observe and examine critically the outcomes of his actions and reflect on to make
	corrective measures subsequently and move forward positively by learning through mistakes

Course Outcome Versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO-1	M			S	S		S				

CO-2	M	S	S	S		S		
CO-3	M			S		M		

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods:	Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outcomes	Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule
1	Introduction Generator Operating Cost Economic Dispatch Problem on a Bus Bar - Optimal Generation Scheduling.	CO-1	For a 3 generator system, the fuel cost coefficients and the operating generator limits are given. The B-coefficients for transmissions loss are given. Determine the economic schedule for loads 160 MW and 210 MW.	Lecture Discussion Problem solving	Assignment (Week 2 - 4)
2	Economic Dispatch Using Newton - Raphson Method - Economic Dispatch Using the Approximate Newton-Raphson Method - Economic Dispatch using Efficient Method.	CO-1	Determine the economic schedule to meet the demand of 150 MW using Newton Raphson Method.	LectureDiscussionProblem solving	Mid-Test 1 (Week 9)
3	Classical Method to Calculate Loss Coefficient Loss Coefficients Calculation Using Y BUS Loss Coefficients Using Sensitivity Factors	CO-1	Use the classical method to determine the B-coefficients for a 5-bus system. Bus 5 is taken as the slack bus. The series impedance and line charging of each line is given.	LectureDiscussionProblem solving	Quiz (Week 2 - 4)
4	Transmission Loss Coefficients Transmission Loss Formula: Functions of Generation and Loads.	CO-1	Consider the given 5-bus system and obtain the optimum schedule.	LectureDiscussionProblem solving	
5	Economic Dispatch Using Exact Loss Formula - Economic Dispatch Using Loss Formula which is a function of Real and Reactive Power	CO-1	Consider the given 5-bus system find the economic generation schedule using Exact Loss Formula.	□ Lecture □ Discussion Problem solving	
6	Economic Dispatch for Active and Reactive Power Balance - Evaluation of Incremental Transmission Loss - Economic Dispatch Based on Penalty Factors.	CO-1	Consider the given 5-bus system and obtain the optimum generation schedule.	Lecture Discussion Problem solving	
7	Optimal Power Flow Based on Newton Method - Optimal Power	CO-1	Consider the given 3-bus system find the economic generation schedule.	LectureDiscussionProblem solving	

8	Flow Based on Gradient Method. Introduction - Hydro Plant Performance Models - Short-Range Fixed-Head Hydrothermal Scheduling - Newton-Raphson Method for Short-Range Fixed- Head Hydrothermal Scheduling Mid Test-1	CO-1 & CO-2	A hydro thermal system is given which consists of one thermal and one hydro generating station. The operating cost of the thermal station and the rate of discharge of hydro generating station is given. Find the optimum generation schedule.	LectureDiscussionProblem solving	
10	Approximate Newton-Raphson Short-Range Fixed-Head - Hydrothermal Scheduling Problem, Short-Range Variable-Head Hydrothermal Scheduling Problem- Classical Method	CO-1 & CO-2	Consider a fundamental hydro thermal system. The objective is to find the optimum generation schedule for a typical day. Incremental fuel cost of the thermal plant is given.	LectureDiscussionProblem solving	
11	Approximate Newton-Raphson Method for Short-Range Variable- Head Hydrothermal Scheduling Problem - Hydro Plant Modelling for Long-Term Operation - Long- Range Generation Scheduling of Hydrothermal Systems	CO-1 & CO-2	Calculate the fuel cost of a generating station.	LectureDiscussionProblem solving	
12	Introduction - Multi-objective Optimization- State-of-the-Art - Fuzzy Set Theory in Power Systems, The surrogate Worth Trade-off (SWT).	CO-2	Write an algorithm for SWT.	LectureDiscussionProblem solving	
13	Approach for Multi-objective Thermal Power Dispatch Problem - Multi-objective Thermal Power Dispatch Problem- Weighting Method	CO-2	Write an algorithm for non-inferior solution for multi-objective dispatch.	LectureDiscussionProblem solving	Assignment (Week 2 - 4)
14	Multi-objective Dispatch for Active and Reactive Power Balance - Multi-objective Short-Range Fixed- Head Hydro-thermal Scheduling- Approximate Newton-Raphson Method	CO-2	Write an algorithm for non-inferior solution for multi-objective dispatch using Newton-Raphson approximate method.	LectureDiscussionProblem solving	Ouiz (Week 2 - 4)
15	Introduction - Fitness Function - Genetic Algorithm Operators - Random Number Generation - Economic Dispatch Problem - Genetic Algorithm Solution Methodology - Genetic Algorithm Solution Based on Real Power Search.	CO-3	Find the value of x represented by 1100110001101, a string of 12 binary digits. The value of x lies between 2.5 to 10	Lecture Discussion Problem solving	Mid-Test 2 (Week 18)
16	Economic Dispatch with valve point loading, Economic dispatch with Ramp Rate Limits and Prohibited Operating Zones –	CO-3	Explain about Economic dispatch with Ramp Rate limits.	Lecture Discussion Problem solving	

	Evolutionary search method for			
	Economic Dispatch.			
17	Evolutionary Programming for CO-3	Explain about Evolutionary	□ Lecture	
	Economic Dispatch – I & II – Anti-	Programming for Economic Dispatch - I	 Discussion Problem solving 	
	Predatory Particle Swarm	Disputer. 1		
	Optimization – Differential			
	Evolution for Economic Dispatch			
	 Real Coded Genetic Algorithm. 			
18	Mid Test-2			
19/20	END EXAM			