SCHEME OF COURSE WORK

Course Details:

Course Title	:POWER ELECTRONICS APPLICATIONS TO POWER SYSTEMS						
Course Code	:13EE2104 L P C :4 0 3						
Program:	: Master of Technology.						
Specialization:	: Power System & Control Automation						
Semester	: I						
Prerequisites	requisites :Power System &Power Electronics						
Courses to which it is a prerequisite Research							

Course Outcomes (COs):

After completion of this course the student will be able to

1	Compare AC and DC systems, Explain the types of HVDC Links and various parameters in HVDC.
2	Analyze the Graetz circuit with various conditions
3	Describe various control schemes, Analyze the harmonics and Design the Filters in HVDC
4	Describe the types of FACTS devices, Operations, various Shunt Devices and their control.
5.	Describe the various Series devices, operation and their control

Program Outcomes (POs):

A graduate of EEE will be able to

Acquire in depth knowledge in the area of newer system central and automation
Acquire in depth knowledge in the area of power system control and automation
Analyze the models with respect to any kind of problem on hand and try to solve related to power system control
and automation
Develop the capability of problem solving and original thinking to arrive at feasible and optimal solutions
considering societal and environmental factors
Interpret and demonstrate sufficient knowledge base, to apply the techniques and tools either individually or in
groups to solve power system problems
Select state-of-the-art tools for modeling, simulation and analysis of problems related to power systems
Recognize positively any collaborative and multidisciplinary research to achieve common goals
Demonstrate knowledge and understanding of power system engineering and management principles and apply
the same for efficiently carrying out projects with due consideration to economical and financial factors
Communicate confidently, make effective presentations and write good reports to engineering community and
society
Recognize the need for life-long learning and have the ability to do it independently
Understand Social responsibilities and follow ethical practices to contribute to the community for sustainable
development
Predict and self examine critically the outcomes of actions, reflect on to make corrective measures and move
forward positively

Course Outcome Versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO-1	S	S	S	M	S	W	W	W	S	W	W
CO-2	S	M	S	S	M	S	W	W	S	W	W
CO-3	S	S	S	S	S	S	W	W	S	W	W
CO-4	S	M	S	S	S	S	W	W	S	W	W
CO-5	S	M	S	S	S	S	W	W	S	W	W

S - Strongly correlated, M - Moderately correlated, W-Weakly correlated

	Assessment Methods:	Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam
--	----------------------------	--

Teaching-Learning and Evaluation

	<u>i Caciii</u>	<u>iig-Leaiiiii</u>	ng and Evaluation			
Week	TOPIC / CONTENTS	Course Outcomes	Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule	
1	Evolution of HVDC Transmission. Comparison of HVAC and HVDC systems.	CO-1	Compare HVAC and HVDC in all aspects	Lecture through Black Board & LCD Discussion	Seminar/Mid Test (Week 9-10)	
2	Components of HVDC transmission systems What are the different components of HVDC Systems		Lecture throughBlack Board & LCDDiscussion	Seminar/Mid Test (Week 9-10)		
3	Required features of rectification circuits for Converter		Lecture throughBlack Board & LCDDiscussion	Seminar/Mid Test (Week 9-10)		
4	Analysis of HVDC converter. a. Different modes of converter operation. b. Output voltage waveforms and DC voltage in rectification.	CO-2	Analyze the Greatz Circuit Analyze the Rectifier Voltage and Valve Voltages	Lecture throughBlack Board & LCDProblem solving	Seminar/Mid Test (Week 9-10)	
5	Analysis of HVDC converter a. Output voltage waveforms and DC in inverter operation. b. Thyristor voltages.	CO-2	Analyze the 12 Pulse Converter With necessary Diagrams and equations	 Lecture through Black Board & LCD Problem solving 	Seminar/Mid Test (Week 9-10)	
6	Equivalent Electrical Circuit of HVDC 12 Pulse Converter Operation	CO-2	derive the Equivalent Circuit of HVDC System	 Lecture through Black Board & LCD Problem solving 	Seminar/Mid Test (Week 9-10)	
7	Smoothing reactor and DC Lines. Reactive power requirements.	CO-2	What is the need for Requirement of Reactive Power Write about different types of Reactive Power sources	 Lecture through Black Board & LCD Discussion 	Seminar/Mid Test (Week 9-10)	
8	Harmonic analysis. Filter design	CO-3	How harmonics are generated and what are the different Harmonics present in HVDC system and how are they eliminated	Lecture through Black Board & LCD Discussion	Seminar/Mid Test (Week 9-10)	
9	Seminar by the Students					
10		Mid-Test		_		
11	HVDC system control features. Control Modes. Control Schemes. Control comparisons	CO-3	Explain the different control Strategies applied for HVDC system Explain and differentiate about the IPC and EPC modes of Firing	 Lecture through Black Board & LCD Discussion 	Seminar/Mid Test (Week 17-18)	
12	Transmission interconnections power flow in an AC system, loading capability limits. Dynamic Stability Considerations. Importance of Controllable parameters. Basic types of FACTS controllers,	CO-4	Explain the dynamic Stability Considerations of FACTS Devices Explain the Power Flow in an AC Network What are the different Types of FACTS Devices	 Lecture through Black Board & LCD Discussion 	Seminar/Mid Test (Week 17-18)	
13	Benefits from FACTS controllers. Objectives of Shunt Compensation. Midpoint Voltage Regulation. Voltage Instability Prevention, Improvement of transient stability. Power oscillation damping.	CO-4	Benefits of FACTS devices Define the Term Compensation and what are the Objectives of Shunt Compensations How a shunt Controller can Compensate	Lecture through Black Board & LCD Discussion	Seminar/Mid Test (Week 17-18)	
14	Methods of controllable VAR generation. 1. Variable Impedance Type Static VAR Generators 2. Switching Converter Type VAR Generators 3. Hybrid VAR Generators.	CO-4	Explain about Variable Type of VAR Generators Explain about Switching Type of VAR Generators Explain about Hybrid Type of VAR Generators	Lecture through Black Board & LCD Discussion	Seminar/Mid Test (Week 17-18)	
15	Concept of series capacitive compensation. Improvement of Transient Stability. Power oscillation and damping, sub-synchronous oscillation damping.	CO-5	Define the Term Compensation and what are the Objectives of Series Compensations How a Series Controllers improve Transient Stability, Power Oscillations damping and sub- synchronous Resonance	Lecture through Black Board & LCD Discussion	Seminar/Mid Test (Week 17-18)	
16	Functional requirements of GTO Thyristor Controlled Series Capacitor(GCSC), Thyristor Switched Series Capacitor(TSSC) Thyristor Controlled Series Capacitor(TCSC) control schemes for GCSC TSSC and TCSC	CO-5	Explain about the control Schemes of GCSC,TSSC and TCSC	Lecture through Black Board & LCD Discussion	Seminar/Mid Test (Week 17-18)	
17		STUDENTS :	SEMINAR		Seminar (Week 17)	
18		Mid-Te	est 2			

19/20	END EXAM	