SCHEME OF COURSE WORK (2014-2015)

COURSE DETAILS:

Course Title	Power system analysis
Course Code	13EE1126
Program	B.Tech
Branch	Electrical & Electronics Engineering
Semester	VII
Prerequisites	Network analysis and power transmission engineering
Course to which it is prerequisite	All Advanced Courses In Electrical Engineering

COURSE OUTCOMES:

1	Calculate Z bus, Y bus for a power system network by singular transformation method
2	Analyze the solutions for power system network by Gauss siedal, Newton-Raphson, and
	Decoupled load flow methods, Fast decoupled load flow method.
3	Explain the concepts of symmetrical component theory and analyze symmetrical faults and
	unsymmetrical faults
4	Discuss the concepts on steady state stability and methods to improve
5	Explain the concepts on Transient state stability, solution to swing equation, and discuss
	methods to improve transient state stability

COURSE OUTCOME/PROGRAM OUTCOMES:

CO/PO	1	2	3	4	5	6	7	8	9	10	11	12
CO-1	Μ	М	S	Μ			Μ		Μ			М
CO-2	М	М	S	Μ			Μ		Μ			М
CO-3	М	М	S	М			М		М			М
CO-4	М	М	S	М			М		М			М
CO-5	Μ	М	S	Μ			Μ		Μ			М

Assessment Methods Assignments/Quiz/Mid Exam/Seminar/Viva-Voce/End Exam

	T			1	1
Wee	Topic/conten	Course	Sample questions	Teaching-learning	Assesmen
k	t	outcom		stategy	t method
		es			&
					schedule
1	Unit-I	CO-1	1). Define oriented graph	Lecture/discussion	Assignme
	POWER		with suitable example and		nt-1 &
	SYSTEM		find Incidence matrix for		quiz-1
	NETWORK		the same.		1
	MATRICES:		2).What are the		
	:		advantages of Ybus in		
	Graph		load flow studies		
	Theory:				
	Definitions,				
	Bus				
	Incidence				
	Matrix,				
	Ybus				
	formation by				
	Direct and				
	Singular				
	Transformati				
	on Methods,				
	Numerical				
	Problems.				
	Formation of				
	ZBus:				
Wee	Partial	CO-1	1). Obtain Z bus when the	Lecture/discussion/pro	Assignme
k-2	network,		element added in between	blem solving	nt-1 &
	Algorithm		two existing buses		quiz-1
	for the		2). Below fig (1) show		1
	Modification		the one-line diagram of a		
	of Z Bus		simple 3 bus power		
	Matrix for		simple 5 bus-power		
	addition		system with a generator at		
	element for		buses 1 and 3 the		
	the		magnitude of voltage at		
	following		bus 1 is adjusted to 1.05		
	cases:		pu. Voltage magnetic at		
	Addition of		bus 3 is fixed at 1 04 pu		
	element		with a real reserve		
	from a new		with a real power		
	bus to		generation of 200 MW. A		
	reference		load consisting of 400		
	Addition of		MW and 250 Mvar is		

TEACHING LEARNING AND EVALUATION

	element		taken from bus 2. Line		
	from a new		impedance are marked in		
	bus to an old		per unit on a 100 Mva		
	bus,		base, and the line		
	Addition of		charging suspectance are		
	element		naglected Obtain the		
	between an		neglected. Obtain the		
	old bus to		power now solution by		
	reference		the gauss – seidel method		
	of element		including line flows and		
	between two		line losses. (upto one		
	old busses		iteration)		
	(Derivations				
	and		1 2		
	Numerical				
	Problems)		() 0.01+10.03 0.0125+10.025		
	Modification				
	of ZBus for		VI=1.05 Slack bus		
	the changes		د		
	in network (
	Problems)				
			J V3=1.04 m		
XX 7		<u> </u>		T / 11 / 1	. .
Wee		CO-2	1). Explain N R method	Lecture/discussion/pro	Assignme
K-3			in rectangular co-ordinate	blem solving	$\operatorname{nt-1} \alpha$
	FUWER		method		quiz-1
	STUDIES ··		. 2		
	Necessity of		0.02+J0.04		
	Power Flow				
	Studies –				
	Data for		VI-1.05 Shahbar		
	Power Flow				
	Studies –				
	Derivation		t n		
	of Static				
	load flow		V3=1.04 pu		
	equations –		200MW		
	Load flow				
	solutions				
	using Gauss				
1	Saidal				
	Seidel Method:				
	load flow equations – Load flow solutions using Gauss		7 V3=1.04 pu 200MW		
	Seidel Method:				

	Factor, Load				
	flow solution				
	with and				
	without P-V				
	buses,				
	Algorithm				
	and				
	Flowchart.				
	Numerical				
	Load flow				
	Solution for				
	Simple				
	Power				
	Systems				
	(Max. 3-				
	Buses):				
	Determinatio				
	n of Bus				
	Voltages,				
	Injected				
	Active and				
	Reactive				
	Powers				
	(Sample One				
	Iteration				
	only) and				
	finding Line				
	Flows/Losse				
	s for the				
	given Bus				
	Voltages				
Wee	Newton	CO-2	A sample power system is	Lecture/discussion/pro	Assignme
k-4	Raphson	002	shown in fig: 2	blem solving	nt-1 &
	Method in		Determine V and V by		auiz-1
	Rectangular		Determine v_2 and v_3 by		1
	and Polar		N-R method (polar co-		
	Co-		ordinates) up to 1		
	Ordinates		iteration. The values of		
	Form: Load		the line impedance are		
	Flow		shown in fig: 2		
	Solution				
	with or				
	without PV				
	Busses-				
	Derivation				
	of Jacobian				

	Elements, Algorithm and Flowchart.		vi=1,04 pu 1 0,5 +j1 gu 1,5+06 ou		
Wee k-5	Decoupled and Fast Decoupled Methods Comparison of Different Methods – DC load Flow.	CO-2	1). A sample power system is shown in fig: 2. Determine V ₂ and V ₃ by fast decoupled method up to 1 iteration. The values of the line impedance are shown in fig: 2	Lecture/discussion/pro blem solving	Assignme nt-1 & quiz-1
Wee k-6	Unit-III SHORT CIRCUIT ANALYSIS : Per-Unit System of Representati on, Per-Unit equivalent reactance	CO-3	 What are the advantages of per unit system. Explain about symmetrical component theory 	Lecture/discussion/pro blem solving	Assignme nt-1 & quiz-1

	network of a				
	three phase				
	Power				
	System,				
	Numerical				
	Problems.				
	Symmetrical				
	fault				
	Analysis:				
	Short Circuit				
	Current and				
	MVA				
	Calculations,				
	Fault levels,				
	Application of				
	Series				
	Reactors,				
	Numerical				
	Problems.				
Wee	Symmetrical	CO-3	Draw positive, negative,	Lecture/discussion/pro	Assignme
k-7	Component		and zero sequence	blem solving	nt-1 &
	Theory:		networks for given power		quiz-1
	Symmetrical		system.		
	Component				
	Transformati				
	on, Positive,				
	Negative and				
	Zero				
	sequence				
	components:				
	Voltages,				
	Currents and				
	Impedances.				
	Sequence				
	Networks:				
	Positive,				
	Negative and				
	Zero				
	sequence				
	Networks,				
	Numerical				
	Problems.	~ ~ ~			
Wee	Unsymmetric	CO-3	Determine the fault	Lecture/discussion/pro	Assignme
k-8	al Fault		current during a LG fault	blem solving	nt-1 &
	Analysis: LG,		on the transmission line		quiz-1
	LL, LLG faults		with and without		
	with and				

	without fault		impedance.		
	impedance,		-		
	Numerical				
	Problems				
Wee	MID TEST-	CO-			
k-9	1	1,CO-			
		2.CO-3			
Wee	problems	Co-3		Lecture/discussion/pro	Assignme
k-10	problems			blem solving	nt-2 &
					quiz-2
Wee	UNIT-IV	CO-4		Lecture/discussion/pro	Assignme
k-11	POWER			blem solving	nt-2 &
	SYSTEM		1)Distinguish between		aniz-2
	STEADY		steady state and dynamic		1
	STATE		stabilities.		
	STABILIT				
	V				
	ANALYSIS				
	Flementary				
	concepts of				
	Steady State.				
	Dynamic and				
	Transient				
	Stabilities.				
	Description of				
	Steady State				
	Stability				
	, Power Limit,				
	Transfer				
Wee	Synchronizing	CO-4	What are the steps to be	Lecture/discussion/pro	Assignme
k-12	Power		taken for improving	blem solving	nt-2 &
	Coefficient,		steady state stability		quiz-2
	Power Angle		limit.		1
	Curve and				
	Determinatio				
	n of Steady				
	State Stability				
	and Methods				
	to improve				
	steady state				
	stability,				
Wee	PROBLEMS	CO-4		Lecture/discussion/pro	Assignme
k-13				blem solving	nt-2 &
					quiz-2
Wee	Unit-V	CO-5		Lecture/discussion/pro	Assignme

k-14	POWER		How transient stability is	blem solving	nt-2 &
	SYSTEM		determined by equal area		quiz-2
	TRANSIEN		criteria.		-
	T STATE				
	STABILIT				
	Y				
	ANALYSIS:				
	:				
	Derivation of				
	Swing				
	Equation.				
	Determinatio				
	n of Transient				
	Stability by				
	Equal Area				
	Criterion,				
Wee	Application of	C0-5	Derive expression for	Lecture/discussion/pro	Assignme
k-15	Equal Area		critical clearing angle	blem solving	nt-2 &
	Criterion,				quiz-2
	Critical				
	Clearing				
	Angle				
	Calculation				
	Solution of				
	Swing				
	Equation:.				
Wee	Point-byPoint	CO-5	Explain point by point	Lecture/discussion/pro	Assignme
k-16	Method.		method of analyzing	blem solving	nt-2 &
	Methods to		stability.		quiz-2
	Improve				
W	Stability		Determine the second iter of	I	A
wee	Application of		Determine the capacity of	hlam caluira	Assignme
K-1/	AULO Declosing and		circuit breaker to be	blem solving	nt-2 &
	Fact		employed for a LLLG		quiz-2
	Operating		fault on the following		
	Circuit		network.		
	Breakers				
Wee	MID Exam-	CO-			
k-18	2	3 CO-			
K-10	2	$4 CO_{-5}$			
Wee	End Exam	All			External
k-		co's			exam
19.2					CAUIII
0					