SCHEME OF COURSE WORK

Course Details:

Course Title	:Power Quality						
Course Code	: 13EE2214	L T P C :4 0 0 3					
Program:	: M. Tech.						
Specialization:	: Power Electronics and Drives						
Semester	: II						
Prerequisites	Basic Electrical Engineering, Power Systems, Power Electronics & Drives.						
Courses to which it is a prerequisite :							

Course Outcomes (COs): At the end of the course, the student will be able to

1	Define and understand different power quality issues.					
2	Describe Causes, effects of long and short interruptions.					
3	Analyze Sags and phase angle jumps in different types of faults.					
4	Describe various equipment's behavior with voltage sags.					
5	Discuss various interfacing devices to mitigate the sags and interruptions.					

Program Outcomes (POs):

The programme outcomes are achieved through the following means:

Course Outcome versus **Program Outcomes:**

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P11
CO-1	S	M	M	M	M		M	M	M	M	
CO-2	S	M	M	M	M		M	M	M	M	
CO-3	S	M	M	M	M		M	M	M	M	
CO-4	S	M	M	M	M		M	M	M	M	
CO-5	S	M	M	M	M		M	M	M	M	

Assessment Methods: Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam

Teaching-Learning and Evaluation

Week	Topic/contents	Course outcomes	Sample questions	Teaching Learning Strategy	Assessment Method & Schedule
1	UNIT-I Introduction of the Power Quality (PQ) problem, Terms used in PQ: Voltage Sag, Swell, Surges, Harmonics, over voltages, spikes, Voltage fluctuations, Transients, Interruption,	CO-1	Define sag, swell, harmonics, spikes, transcients,etc	LectureDiscussion	Mid test-I (Week-9) Seminar (Week – 1)
2	overview of power quality phenomenon, purpose of standardization	CO-1	Explain the purpose of standardization.	LectureDiscussion	Mid test-I (Week-9) Seminar (Week – 2)
3	IEC electromagnetic compatibility standards, European voltage characteristics.	CO-1	Explain briefly about the European voltage characteristics	LectureDiscussion	Mid test-I (Week-9) Seminar (Week – 3)
4	UNIT-II Interruptions – Definition – Difference between failures, outage, Interruptions – causes of Long Interruptions – Origin of Interruptions – Limits for the Interruption frequency – Limits for the interruption duration – costs of Interruption	CO-2	Define Interruption and explain the origin of interruptions	LectureDiscussion	Mid test-I (Week-9) Seminar (Week – 4)
5	Overview of Reliability evaluation to power quality, comparison of observations and reliability evaluation. Short interruptions – definition, origin of short interruptions,	CO-2	Write a brief note on Reliability evaluation to power quality.	LectureDiscussion	Mid test-I (Week-9) Seminar (Week – 5)
6	Basic principle, fuse saving, voltage magnitude events due to reclosing, voltage during the interruption, monitoring of short interruptions, difference between medium and low voltage systems.	CO-2	Why single phase tripping is necessary? Describe briefly about the voltage during and after the fault on a power system?	LectureDiscussion	Mid test-I (Week-9) Seminar (Week – 6)
7	Multiple events, single phase tripping – voltage and current during fault period, voltage and current at post fault period,	CO-2	Explain briefly about stochastic prediction of short interruptions.	LectureDiscussion	Mid test-I (Week-9) Seminar (Week – 7)

	stochastic prediction of short				
8	interruptions. UNIT-III Voltage sag – definition, causes of voltage sag, voltage sag magnitude and monitoring, theoretical calculation of voltage sag magnitude,	CO-3	What are the causes of voltage sag? Explain how sag is calculated theoretically.	LectureDiscussion	Mid test-I (Week-9) Seminar (Week – 8)
9	Mid Test – I				
10	voltage sag calculation in non- radial systems, meshed systems and Voltage sag duration.	CO-3	Explain how voltage sag is calculated in non-radial system.	LectureDiscussion	Mid test-II (Week-18) Seminar (Week – 10)
11	Three phase faults, phase angle jumps, magnitude and phase angle jumps for three phase unbalanced sags, load influence on voltage sags	CO-3	What is phase angle jump and what are its effects?	LectureDiscussion	Mid test-II (Week-18) Seminar (Week – 11)
12	Voltage sag – equipment behavior of Power electronic loads, induction motors, synchronous motors,	CO-4	What are the effects of various equipments on voltage sag?	LectureDiscussion	Mid test-II (Week-18) Seminar (Week – 12)
13	computers, consumer electronics, adjustable speed AC drives and its operation.	CO-4	Explain the effect of voltage sag on adjustable speed AC drives and its operation.	LectureDiscussion	Mid test-II (Week-18) Seminar (Week – 13)
14	Mitigation methods of AC Drives, adjustable speed DC drives and its operation, mitigation methods of DC drives.	CO-4	Explain the mitigation methods of AC and DC drives.	LectureDiscussion	Mid test-II (Week-18) Seminar (Week – 14)
15	Overview of mitigation methods – from fault to trip, reducing the number of faults, reducing the fault clearing time, changing the power system,	CO-5	How the fault clearing time can be reduced?	LectureDiscussion	Mid test-II (Week-18) Seminar (Week – 15)
16	installing mitigation equipment, improving equipment immunity, different events and mitigation methods.	CO-5	How equipment immunity can be improved?	LectureDiscussion	Mid test-II (Week-18) Seminar (Week – 16)
17	System equipment interface – voltage source converter, series voltage controller, shunt Controller, combined shunt and series controller.	CO-5	What is voltage source converter? What is the purpose of it? Explain briefly about series voltage controller?	LectureDiscussion	Mid test-II (Week-18) Seminar (Week – 17)
18	Mid Test – II				
19/20	END EXAM				