SCHEME OF COURSE WORK

Course Details:

Course Title	: Power Generation, Operation and Control								
Course Code	: 13EE2101	L	Р	С	:	4	0	3	
Program:	: M.Tech.								
Specialization:	: Power System Control and Automation								
Semester	I:I								
Prerequisites	Prerequisites : Power Generation Engineering, Power Transmission Engineering and Power								
	System Operation and Control.								
Courses to whic	h it is a prerequisite :								

Course Outcomes (COs):

1	Solve Unit Commitment problem using simple priority list scheme and dynamic									
	programming technique using for a given power system.									
2	Estimate the frequency deviation for a given change of load and design control systems for									
	making steady-state frequency error to zero.									
3	Select appropriate voltage control technique for improving voltage profile in a transmission									
	system.									
4.	Estimate system security level using contingency analysis and understand state estimation.									

Estimate system security level using contingency analysis and understand state estimation.
Solve optimal power flow problem using Gradient Method and Newton's Method.

Course Outcome Versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO-1	S	W	S	W	W	Μ	S	W	W	W	S
CO-2	S	S	S	W	S	М	Μ	W	W	W	S
CO-3	S	S	S	W	W	W	W	W	W	W	S
CO-4	S	S	W	W	М	W	W	W	W	W	W
CO-5	S	S	W	W	S	W	W	W	W	W	S

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods: Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam
--

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outcomes	Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule
1	Introduction to Unit Commitment	CO1	What is Unit Commitments and its constraints	Lecture Discussion	Mid- Test1 Assignment
2	Unit Commitment Solution methods- Priority List Scheme and Backward Dynamic Programming	CO1	Solve Unit Commitment using Priority list scheme	Lecture Problem Solving	Mid Test 1 Assignment
3	Forward Dynamic Programming with example calculations	CO1	Explain the process involved in obtaining unit commitment solution using Forward DP	Lecture Discussion Problem solving	Test1
4	Active Power and Frequency Control; Load Frequency control of an isolated power system; Composite characteristics of Power Systems	CO2	Explain the steady-state behavior of frequency of an isolated power system.	Lecture	Test 1 Seminar
5	Response rates of Turbine-Governing systems; Fundamentals of AGC and related problems	CO2	How frequency is controlled using AGC scheme.	Lecture	Mid- Test 1
6	Two-area load frequency control; Tie-line bias control; Under Frequency Load Schedding	CO2	How frequency control improves with two-area control	Lecture, Demonstration with an example.	Test I
7	Introduction to Reactive Power and Voltage CO3 Control; Production and Absorption of Reactive Power, Methods of Voltage Control		What is the need of Reactive Power Control and how is it done?	Lecture	Test 1
8	Shunt Reactor, Shunt Capacitor, Series Capacitor, Synchronous Condensers	CO3	Explain how different compensations improve voltage profile	Lecture	Test 1 Assignment
9	Test I				
10	Principles of Transmission System Compensation	CO3	What is the need for transmission system compensation and how is it done	Lecture Discussion	Test 2
11	Factors affecting Power System Security; Contingency Analysis; DC Load Flow			Lecture	Test 2
12	Linear Sensitivity Factors; AC Power Flow Methods; Contingency Selection	CO4	How contingency analysis is carried out using linear sensitivity coefficients	Lecture	Assignment Test 2
13			What is Power System State Estimation and how it is done	Lecture	Test 2
14	State Estimation of an AC network – Development of method.	CO4	Explain with an example power system state estimation	lecture	Assignment
15	Optimal Power Flow(OPF) , Solution of OPF- Gradient Method	CO5	What is optimal power flow and how is it different from Economic Load dispatch	Lecture	Test 2
16	Newton's Method; Linear Sensitivity Analysis; Sensitivity coefficients of an AC network model	CO5	Describe the process of Optimal Power Flow using Gradient Method	Lecture Discussion	Test 2 Assignment
17	Overview and discussion of the course				
18	Test 2				
19/20	END EXAM				