SCHEME OF COURSE WORK

Course Title	POWER ELECTRONICS AND SIMULATION LAB							
Course Code	13EE1133 LTPC 0032							
Program	B.Tech							
Branch	Electrical and Electronics Engineering							
Semester	VII							
Prerequisites	Power Electronics, Electrical Machines – I and Electrical Machines – II							
Course to which	Engineering							
it is prerequisite	Engineering							

Course Outcomes (COs):

At the end of the Course, the Student will be able to:

CO-1	Design firing and driver circuits.
CO-2	Design and analyze AC-DC converters
CO-3	Design and analyze DC-DC converters.
CO-4	Design and analyze DC-AC converters.
CO-5	Design and implement power electronic converters using various simulation tools.

Program Outcomes (POs):

The student of Electrical and Electronics Engineering at the end of the program will be able to:

D-1 Apply the knowledge of basic sciences and electrical and electronics engineering fundamentals to solve						
Apply the knowledge of basic sciences and electrical and electronics engineering fundamentals to solve						
the problems of power systems and drives.						
Analyze power systems that efficiently generate, transmit and distribute electrical power in the context of						
present Information and Communications Technology.						
Design and develop electrical machines and associated controls with due considerations to societal ar						
environmental issues.						
Design and conduct experiments, analyze and interpret experimental data for performance analysis.						
Apply appropriate simulation tools for modeling and evaluation of electrical systems.						
Apply the electrical engineering knowledge to assess the health and safety issues and their consequences.						
Demonstrate electrical engineering principles for creating solutions for sustainable development.						
Develop a techno ethical personality that help to serve the people in general and Electrical and Electronics						
Engineering in particular.						
Develop leadership skills and work effectively in a team to achieve project objectives.						
Communicate effectively in both verbal and written form.						
Understand the principles of management and finance to manage project in multi disciplinary						
environments.						
Pursue life-long learning as a means of enhancing the knowledge and skills.						

Course Outcome versus rrogram Outcomes.												
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12
CO-1	S	М	М	М	S		М	М				М
CO-2	S	М	М	М	S		М	М				М
CO-3	S	М	М	М	S		М	М				М
CO-4	S	М	М	М	S		Μ	М				М
CO-5	S	М	М	М	S		М	М				М

Course Outcome versus Program Outcomes:

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outco mes	Sample questions	Teaching- learning strategy	Assessment Method & Schedule			
1.	Manual Write up & Demonstration	CO-1,2	Explain the Working of VI Characteristics of SCR	Demo and Experimentat ion	Day to Day Analysis			
2.	Study of static characteristics of SCR, MOSFET & IGBT	CO-1	Obtain the Characteristics of MOSFET with suitable Experiment and plot it in a graph sheet.	Demo and Experimentat ion	Day to Day Analysis			
3.	SCR firing circuits and driver circuit for MOSFET/IGBT	CO-1	Mention the applications of SCR	Demo and Experimentat ion	Day to Day Analysis			
4.	SinglePhaseACVoltageControllerCO-2with R and RL LoadsCO-2List out the applications of AC voltage controllers. Explain the Principle of On-Off Control Technique (Integral Cycle Control)				Day to Day Analysis			
5.	Single Phase fully controlled bridge converter with R and RL loads	Demo and Experimentat ion	Day to Day Analysis					
6.	Speed Control of D.C. motor using dual AC/DC converter.	CO-2	In order to operate with 4 Quadrant operations which converter is required? What are the advantages and disadvantages of Dual Converter?	Demo and Experimentat ion	Day to Day Analysis			
7.	Single Phase Half controlled converter with R and RL load.	Demo and Experimentat ion	Day to Day Analysis					
8.	Three Phase fully controlled bridge converter with RL load.	Demo and Experimentat ion	Day to Day Analysis					
9.	MID-I							
10.	Simulation of a DC- DC chopper fed DC drive	Demo and Experimentat ion	Day to Day Analysis					
11.	Simulation of DC-AC Inverter fed Induction motor drive	ction CO-4 What type of switches is used to control			Day to Day Analysis			
12.	Single Phase series inverter with R and RL loads.	Demo and Experimentat ion	Day to Day Analysis					

13.	Single phase parallel inverter with R & RL loads	CO-4	What are the Advantages of Parallel Inverter?	Demo and Experimentat ion	Day to Day Analysis			
14.	Simulation of single- phase full converter using RL load.	CO-5	Why do we require Turn-on circuits for thyristors?	Demo and Experimentat ion	Day to Day Analysis			
15.	Simulation of three phase AC voltage controller using RL & RLE load.	CO-5	Why Voltage control is required. What are the applications for the control of Voltage	Demo and Experimentat ion	Day to Day Analysis			
16.	Simulation of buck/boost converters	CO-5	Explain the Continuous and Discontinuous Conduction Modes.	Demo and Experimentat ion	Day to Day Analysis			
17.	Simulation of single phase Inverter with PWM control		What is PWM Technique? What are the different PWM techniques available?	Demo and Experimentat ion	Day to Day Analysis			
18.	MID TEST – 2							
19. /20.	SEMESTER END EXAM							