SCHEME OF COURSE WORK

Course Details:

~ = • • • • • • •						
Course Title	: Optimization Methods in Engineering					
Course Code	:13ME2104	L	Р	С	:4 3	
Program:	: M.Tech.					
Specialization:	: CAD/CAM					
Semester	: 1 st					
Prerequisites	:					
Courses to which	ch it is a prerequisite :					

Course Outcomes (COs): The student will be able to

- 1 Explain the importance and basic principles of optimization
- 2 Apply the theory to formulate design problems as mathematical optimization problems
- 3 Solve optimization problems using different methods or algorithms
- 4 Learn different methods of solving unconstrained and constrained optimization problems
- 5 Select a suitable technique for a specific engineering problem

Program Outcomes (POs): A postgraduate of CAD/CAM will have the

1	Ability to apply fundamentals in the areas of computer aided design and manufacturing
2	Ability to apply creative and innovative skills to analyze computer aided design and manufacturing
	problems
3	Ability to identify, formulate and solve design and manufacturing problems
4	Ability to carry out the research related to design and manufacturing
5	Familiarity with existing and recent CAD/CAM software
6	Ability to collaborate with educational institutions, industry and R&D organizations in
	multidisciplinary teams
7	Ability to apply project and finance management skills to manage projects
8	Ability to prepare technical reports and communicate effectively
9	Awareness of the need for and ability to engage in lifelong learning
10	Ethical attitude and accountability to the society
11	Ability to conduct a thorough survey and analyze critically to plan, design and implement new thoughts
	into action

Course Outcome Versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	S			М								
CO-2			М	М								
CO-3	М						М					
CO-4	М						М					
CO-5			S	М								

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods:	Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outcomes	Sample questions	TEACHING-LEARNING STRATEGY	Assessment Method & Schedule
1	Basic principles of optimization Classification of optimization methods, Classical optimization techniques-Single variable optimization methods	CO-1	 Explain the following terms: Design Vector, Design constraint Find the maxima and minima, if any, of (any) given function f(x) 	 Lecture / Discussion 	Assignment (Week 5 - 7) Mid-Test 1 (Week 9)
2	Classical optimization techniques-Multi variable optimization methods	CO-1 & CO-2	 Construct a Lagrange function for a problem with two variables Give the necessary conditions for its extremum 	 Lecture / Discussion Problem solving 	Assignment (Week 5 - 7) Mid-Test 1 (Week 9)
3	One dimensional unconstrained optimization	CO-3,CO-4	 Minimize the given function <i>f(x)</i> by Golden section method in the interval Newton method 	 Lecture Problem solving 	Assignment (Week 5 - 7) Mid-Test 1 (Week 9)
4	Non- linear multivariable optimization without constraints-Univariate, Pattern search methods	CO-3,CO-4	 Minimize given f(X) using Univariate method Determine if the given two vectors serve as conjugate directions for minimizing the given function f 	 Lecture Problem solving 	Assignment (Week 5 - 7) Mid-Test 1 (Week 9)
5	Non- linear multivariable optimization without constraints –Steepest descent Non- linear multivariable optimization with constraints-Penalty approach concepts	CO-3,CO-4	 Minimize given <i>f(X)</i> using steepest descent method Explain the concept of penalty approach methods in solving non- linear multivariable optimization problems with constraints 	 Lecture Problem solving 	Assignment (Week 5 - 7) Mid-Test 1 (Week 9)
6	Interior and exterior penalty function methods	CO-3,CO-4	 Compare the exterior penalty function method and interior penalty function method used to solve constrained optimization problems Minimize given f(X) subject to the given constraints using interior penalty function approach 	 Lecture Problem solving 	Assignment (Week 5 - 7) Mid-Test 1 (Week 9)
7	Problems solving / Seminars	CO-3,CO-4		 Problems solving Seminars 	Quiz/Seminar
8	Geometric programming-solution from differential calculus point of view	CO-3,CO-4	 Give examples of posynomial functions Derive orthogonality and normality conditions in solving GP problem 	 Lecture / Discussion 	Mid-Test 1 (Week 9
9	Mid-Test 1				
10	Geometric programming-Arithmetic-geometric inequality Optimization of zero degree difficulty problems without constraints	CO-3,CO-4	 What is arithmetic- geometric inequality? Explain the term "degree of difficulty" in G.P. 	 Lecture Discussion Problem solving 	Seminar Mid-Test 2 (Week 18)
11	Optimization of zero degree difficulty problems with constraints Optimization of single degree difficulty problems without constraints	CO-3,CO-4	 Minimize the given function <i>f(X)</i> subject to the given constraints using geometric programming 	 Lecture Problem solving 	Seminar Mid-Test 2 (Week 18)

12	Problems solving / Seminars	CO-3,CO-4		 Problems solving 	Quiz/
				 Seminars 	Seminar
13	Genetic algorithms	CO-4	 What are the basic operations used in GAs? Discuss in detail how the operations are performed 	 Lecture Discussion Power Point Presentation 	Seminar Mid-Test 2 (Week 18)
14	Genetic algorithms	CO-4	 What are the basic operations used in GAs? Discuss in detail how the operations are performed 	 Lecture Discussion Power Point Presentation 	Seminar Mid-Test 2 (Week 18)
15	Basic concepts of stochastic programming	CO-4	 Explain how a multi stage decision process is represented. What is stochastic dynamic programming? Explain 	 Lecture Discussion Power Point Presentation 	Seminar Mid-Test 2 (Week 18)
16	Engineering applications	CO-5	 Write short notes on the following Design optimization of springs Design of a two-bar truss for minimum weight 	 Lecture Discussion Power Point Presentation 	Case Study Mid-Test 2 (Week 18)
17	Problems solving / Seminars	CO-4,CO-5		 Problems solving Seminars 	Seminar
18	Mid-Test 2				
19/20	END EXAM				