SCHEME OF COURSE WORK

Course Details:

Course Title	: Optimization Methods in Engineering						
Course Code	:13ME2104	L	P	C	:4 3		
Program:	: M.Tech.						
Specialization:	: CAAD						
Semester	1 st						
Prerequisites	:						
Courses to which	Courses to which it is a prerequisite :						

Course Outcomes (COs): The student will be able to

1	Explain the importance and basic principles of optimization
2	Apply the theory to formulate design problems as mathematical optimization problems
3	Solve optimization problems using different methods or algorithms
4	Learn different methods of solving unconstrained and constrained optimization problems
5	Select a suitable technique for a specific engineering problem

Program Outcomes (POs): A postgraduate of CAAD will have the

1	Ability to apply fundamental principles in the areas of analysis and design of mechanical components
	and systems
2	Ability to apply creative and innovative skills in the area of mechanical design
3	Ability to identify, formulate and solve complex mechanical design problems
4	Ability to carry out the research related to computer aided analysis and design
5	Knowledge of advanced modeling and analysis tools
6	Ability to function in multidisciplinary teams during collaboration with educational institutions, industry
	and R&D organizations
7	Ability to apply knowledge of the engineering, financial and management principles to execute projects
8	Ability to effectively convey technical material through oral and/or written communication
9	Recognition of the need for and ability to engage in lifelong learning
10	Understanding of professional and ethical responsibility
11	Ability to conduct a thorough survey and analyze critically to plan, design, and test components and
	systems implementing new thoughts

Course Outcome Versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	S			M								
CO-2			M	M								
CO-3	M						M					
CO-4	M						M					
CO-5			S	M								

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods: Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam	
--	--

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outcomes	Sample questions	TEACHING-LEARNING STRATEGY	Assessment Method & Schedule
1	Basic principles of optimization Classification of optimization methods, Classical optimization techniques-Single variable optimization methods	CO-1	 Explain the following terms: Design Vector, Design constraint Find the maxima and minima, if any, of (any) given function f(x) 	Lecture / Discussion	Assignment (Week 5 - 7) Mid-Test 1 (Week 9)
2	Classical optimization techniques-Multi variable optimization methods	CO-1 & CO-2	Construct a Lagrange function for a problem with two variables Give the necessary conditions for its extremum	Lecture / DiscussionProblem solving	Assignment (Week 5 - 7) Mid-Test 1 (Week 9)
3	One dimensional unconstrained optimization	CO-3,CO-4	 Minimize the given function f(x) by Golden section method in the interval Newton method 	LectureProblem solving	Assignment (Week 5 - 7) Mid-Test 1 (Week 9)
4	Non- linear multivariable optimization without constraints-Univariate, Pattern search methods	CO-3,CO-4	 Minimize given f(X) using Univariate method Determine if the given two vectors serve as conjugate directions for minimizing the given function f 	LectureProblem solving	Assignment (Week 5 - 7) Mid-Test 1 (Week 9)
5	Non- linear multivariable optimization without constraints –Steepest descent Non- linear multivariable optimization with constraints-Penalty approach concepts	CO-3,CO-4	Minimize given f(X) using steepest descent method Explain the concept of penalty approach methods in solving non- linear multivariable optimization problems with constraints	Lecture Problem solving	Assignment (Week 5 - 7) Mid-Test 1 (Week 9)
6	Interior and exterior penalty function methods	CO-3,CO-4	Compare the exterior penalty function method and interior penalty function method used to solve constrained optimization problems Minimize given f(X) subject to the given constraints using interior penalty function approach	LectureProblem solving	Assignment (Week 5 - 7) Mid-Test 1 (Week 9)
7	Problems solving / Seminars	CO-3,CO-4		Problems solvingSeminars	Quiz/Seminar
8	Geometric programming-solution from differential calculus point of view	CO-3,CO-4	 Give examples of posynomial functions Derive orthogonality and normality conditions in solving GP problem 	Lecture / Discussion	Mid-Test 1 (Week 9
9	Mid-Test 1				
10	Geometric programming-Arithmetic-geometric inequality Optimization of zero degree difficulty problems without constraints	CO-3,CO-4	 What is arithmetic- geometric inequality? Explain the term "degree of difficulty" in G.P. 	Lecture Discussion Problem solving	Seminar Mid-Test 2 (Week 18)
11	Optimization of zero degree difficulty problems with constraints Optimization of single degree difficulty problems without constraints	CO-3,CO-4	 Minimize the given function f(X) subject to the given constraints using geometric programming 	LectureProblem solving	Seminar Mid-Test 2 (Week 18)

19/20	END EXAM				
18	Mid-Test 2				
17	Problems solving / Seminars	CO-4,CO-5		Problems solvingSeminars	Seminar
16	Engineering applications	CO-5	Write short notes on the following Design optimization of springs Design of a two-bar truss for minimum weight	Lecture Discussion Power Point Presentation	Case Study Mid-Test 2 (Week 18)
15	Basic concepts of stochastic programming	CO-4	 Explain how a multi stage decision process is represented. What is stochastic dynamic programming? Explain 	LectureDiscussionPower Point Presentation	Seminar Mid-Test 2 (Week 18)
14	Genetic algorithms	CO-4	What are the basic operations used in GAs?Discuss in detail how the operations are performed	LectureDiscussionPower Point Presentation	Seminar Mid-Test 2 (Week 18)
13	Genetic algorithms	CO-4	 What are the basic operations used in GAs? Discuss in detail how the operations are performed 	Lecture Discussion Power Point Presentation	Seminar Mid-Test 2 (Week 18)
12	Problems solving / Seminars	CO-3,CO-4		Problems solvingSeminars	Quiz/ Seminar