SCHEME OF COURSE WORK

Course Details:

Course Title	: Optimization Methods in Engineering					
Course Code	:19ME2105	L	Р	С	3 - 0 - 3	
Program:	: M.Tech.					
Specialization:	: CAD/CAM					
Semester	· 1 st					
Prerequisites	:					
Courses to which it is a prerequisite :						

Course Outcomes (COs): The student will be able to

CO-1	Solve optimization problems using classical optimization techniques
CO-2	Solve simple non-linear multivariable optimization problems
CO-3	Solve optimization problems using geometric programming
CO-4	Explain the working of different operators used in genetic algorithms for optimization
CO-5	Explain the basic concepts of stochastic programming; formulate and outline a suitable optimization
	technique in basic engineering applications.

Program Outcomes (POs)

At the end of the program, the students in CAD/CAM will be able to

- 1. acquire fundamentals in the areas of computer aided design and manufacturing
- 2. apply innovative skills and analyze computer aided design and manufacturing problems critically
- 3. identify, formulate and solve design and manufacturing problems
- 4. carry out research related to design and manufacturing
- 5. use existing and recent CAD/CAM software
- collaborate with educational institutions, industry and R&D organizations in multidisciplinary teams
- 7. apply project and finance management principles in engineering projects
- 8. prepare technical reports and communicate effectively
- 9. engage in independent and life-long learning and pursue professional practice in their specialized areas of CAD/CAM
- 10. exhibit accountability to society while adhering to ethical practices
- 11. act independently and take corrective measures where necessary

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO-1	S			Μ							
CO-2			Μ	Μ							
CO-3	М						М				
CO-4	М						М				
CO-5			S	М							

Course Outcome Versus Program Outcomes:

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Teaching-Learning and Evaluation

Week	Topic / Contents	Course Outcomes	Sample questions	Teaching-Learning Strategy	Assessment and Schedule
1	Basic principles of optimization Classification of optimization methods, Classical optimization techniques -Single variable optimization methods	CO-1	 Explain the following terms: Design Vector, Design constraint Find the maxima and minima of given function f(x) 	 Lecture/ Discussion Problem solving 	Assignment (Week5-12)
2	One dimensional unconstrained optimization: Unimodal function, Bisection method, Quadratic search,	CO-1	 Minimize the given function f(x) by bisection method 	 Lecture/ Discussion Problem solving 	Assignment (Week5-12) Test 1 (Week 9)
3	One dimensional unconstrained optimization: Cubic search, unrestricted search, Dichotomous search	CO-1	 Minimize the given function f(x) by Quadratic search, Cubic search 	 Lecture/ Discussion Problem solving 	Assignment (Week5-12)
4	Fibonacci method, Golden Section method, Newtons method, Modified Newtons method	CO-1	 Minimize the given function f(x) by Fibonacci method/Golden section method / Newtons method 	 Lecture/ Discussion Problem solving 	Assignment (Week5-12) Test 1 (Week 9)
5	Non- linear multivariable optimization without constraints – Univariate method, Pattern search method, Rosenbrock's rotating coordinates method	CO-2	 Outline of Univariate method, Pattern search method, Rosenbrock's rotating coordinates method 	Lecture/ Discussion Problem solving	Q&A session (Week 6)
6	Non- linear multivariable optimization without constraints – Hooke & Jeeves method and Powells method, Newtons method and steepest descent method	CO-2	 Minimize f(X) by Newtons method Minimize f(X) by steepest descent method 	 Lecture/ Discussion Problem solving 	Test 1 (Week 9)
7	Multivariable with equality constraints, direct substitution method, method of Lagrange multipliers	CO-2	 Minimize f(X) subject to constraint h(X)=0 by direct substitution method Minimize f(X) subject to constraint h(X)=0 by method of Lagrange multipliers 	 Lecture/ Discussion Problem solving 	Assignment (Week5-12) Test 1 (Week 9)
8	Non-linear multivariable optimization with constraints: Penalty approach- Interior and exterior penalty function methods	CO-2	 Compare the exterior and interior penalty function methods Minimize given f(X) subject to constraints using interior penalty function approach 	 Lecture/ Discussion Problem solving 	Assignment (Week5-12) Test 2 (Week 18)
9	Test 1				
10	Geometric programming (GP): Solution by differential calculus; GP: Arithmetic-geometric inequality; Optimization of zero degree difficulty problems without constraints	CO-3	 Give examples of polynomial functions Derive orthogonality and normality conditions in solving GP problem 	 Lecture/ Discussion Problem solving 	Assignment (Week5-12)
11	Optimization of zero degree difficulty problems with constraints	CO-3	 Minimize the given function f(X) subject to the given constraints using GP 	 Lecture Problem solving 	Assignment (Week5-12) Test 2 (Week 18)
12	Optimization of single degree difficulty problems without constraints	CO-3	 Minimize the given function f(X) subject to the given constraints using GP 	 Problems solving Seminars 	Assignment (Week5-12)
13	Genetic algorithms (GA): Principle, reproduction & crossover operators, mutation, termination criteria	CO-4	 Discuss the basic operations used in GAs 	Lecture Power Point Presentation	Test 2 (Week 18)
14	GA for constrained optimization, drawbacks of GA	CO-4	 Discuss in detail how the operations are performed for constrained optimization 	 Lecture Power Point Presentation 	Report (Week 14 - 18)
15	Basic concepts of stochastic programming	CO-5	 Demonstrate stochastic dynamic programming 	 Lecture/Discussion Power Point Presentation 	Report (Week 14 - 18)
16	Basic concepts of Multi-stage optimization and Multi-objective optimization	CO-5	 Outline the basic concepts of Multi-stage optimization and Multi-objective optimization 	 Discussion Problems solving Seminars 	Report (Week 14 - 18)
17	Engineering applications: Minimization of weight of a cantilever beam, truss, shaft; optimal design of springs	CO-5	 Design optimization of springs Design of a truss for minimum weight Design of a beam/shaft for minimum weight 	 Discussion Problems solving Seminars 	Report (Week 14 - 18) Test 2 (Week 18)
18	Test 2				
19/20	END EXAM				