SCHEME OF COURSE WORK

Course Details:

Course Title	: Optimization Methods in Engineering							
Course Code	:15ME2104	L	P C	3 - 0 - 3				
Program:	: M.Tech.							
Specialization:	alization: : CAAD							
Semester	· 1 st							
Prerequisites :								
Courses to which it is a prerequisite :								

Course Outcomes (COs): The student will be able to

CO-1	Solve optimization problems using classical optimization techniques						
CO-2	2 Solve simple non-linear multivariable optimization problems						
CO-3	Solve optimization problems using geometric programming						
CO-4	Explain the working of different operators used in genetic algorithms for optimization						
CO-5	Explain concepts of stochastic programming & select a suitable technique for a specific engineering problem						

Program Outcomes (POs): A postgraduate of CAAD will have the

0					
PO-1	Ability to apply fundamental principles in the areas of analysis & design of mechanical components & systems				
PO-2	Ability to apply creative and innovative skills in the area of mechanical design				
PO-3	Ability to identify, formulate and solve complex mechanical design problems				
PO-4	Ability to carry out the research related to computer aided analysis and design				
PO-5	Knowledge of advanced modeling and analysis tools				
PO-6	Ability to function in multidisciplinary teams during collaboration with educational institutions, industry and				
	R&D organizations				
PO-7	Ability to apply knowledge of the engineering, financial and management principles to execute projects				
PO-8	Ability to effectively convey technical material through oral and/or written communication				
PO-9	Recognition of the need for and ability to engage in lifelong learning				
PO-10	Understanding of professional and ethical responsibility				
PO-11	Ability to conduct a thorough survey and analyze critically to plan, design, and test components and systems				
	implementing new thoughts				

Course Outcome Versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO-1	S			М							
CO-2			М	М							
CO-3	М						М				
CO-4	М						М				
CO-5			S	М							

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods: Assignment / Seminar / Test / End Exam
--

Teaching-Learning and Evaluation

Week	Topic / Contents	Course Outcomes	Sample questions	Teaching-Learning Strategy	Assessment and Schedule
1	Basic principles of optimization Classification of optimization methods, Classical optimization techniques -Single variable optimization methods	CO-1	 Explain the following terms: Design Vector, Design constraint Find the maxima and minima of given function f(x) 	 Lecture/ Discussion Problem solving 	Assignment (Week5-12)
2	One dimensional unconstrained optimization: Unimodal function, Bisection method, Quadratic search,	CO-1	 Minimize the given function f(x) by bisection method 	 Lecture/ Discussion Problem solving 	Assignment (Week5-12) Test 1 (Week 9)
3	One dimensional unconstrained optimization: Cubic search, unrestricted search, Dichotomous search	CO-1	 Minimize the given function f(x) by Quadratic search, Cubic sarch 	 Lecture/ Discussion Problem solving 	Assignment (Week5-12)
4	Fibonacci method, Golden Section method, Newtons method, Modified Newtons method	CO-1	 Minimize the given function f(x) by Fibonacci method / Golden section method / Newtons method 	 Lecture/ Discussion Problem solving 	Assignment (Week5-12) Test 1 (Week 9)
5	Non- linear multivariable optimization without constraints – Univariate method, Pattern search method, Rosenbrock's rotating coordinates method	CO-2	 Outline of Univariate method, Pattern search method, Rosenbrock's rotating coordinates method 	 Lecture/ Discussion Problem solving 	Q&A session (Week 6)
6	Non- linear multivariable optimization without constraints – Hooke & Jeeves method and Powells method, Newtons method and steepest descent method	CO-2	 Minimize f(X) by Newtons method Minimize f(X) by steepest descent method 	 Lecture/ Discussion Problem solving 	Test 1 (Week 9)
7	Multivariable with equality constraints, direct substitution method, method of Lagrange multipliers	CO-2	 Minimize f(X) subject to constraint h(X)=0 by direct substitution method Minimize f(X) subject to constraint h(X)=0 by method of Lagrange multipliers 	 Lecture/ Discussion Problem solving 	Assignment (Week5-12) Test 1 (Week 9)
8	Non-linear multivariable optimization with constraints: Penalty approach- Interior and exterior penalty function methods	CO-2	 Compare the exterior and interior penalty function methods Minimize given f(X) subject to constraints using interior penalty function approach 	 Lecture/ Discussion Problem solving 	Assignment (Week5-12) Test 2 (Week 18)
9	Test 1				
10	Geometric programming (GP): Solution by differential calculus; GP: Arithmetic-geometric inequality; Optimization of zero degree difficulty problems without constraints	CO-3	 Give examples of posynomial functions Derive orthogonality and normality conditions in solving GP problem 	 Lecture/ Discussion Problem solving 	Assignment (Week5-12)
11	Optimization of zero degree difficulty problems with constraints	CO-3	 Minimize the given function f(X) subject to the given constraints using GP 	 Lecture Problem solving 	Assignment (Week5-12) Test 2 (Week 18)
12	Optimization of single degree difficulty problems without constraints	CO-3	 Minimize the given function f(X) subject to the given constraints using GP 	 Problems solving Seminars 	Assignment (Week5-12)
13	Genetic algorithms (GA): Principle, reproduction & crossover operators, mutation, termination criteria	CO-4	 Discuss the basic operations used in GAs 	 Lecture Power Point Presentation 	Test 2 (Week 18)
14	GA for constrained optimization, drawbacks of GA	CO-4	 Discuss in detail how the operations are performed for constrained optimization 	 Lecture Power Point Presentation 	Report (Week 14 - 18)
15	Basic concepts of stochastic programming	CO-5	 Demonstrate stochastic dynamic programming 	 Lecture/Discussion Power Point Presentation 	Report (Week 14 - 18)
16	Basic concepts of Multi-stage optimization and Multi-objective optimization	CO-5	 Outline the basic concepts of Multi-stage optimization and Multi-objective optimization 	 Discussion Problems solving Seminars 	Report (Week 14 - 18)
17 18	Engineering applications: Minimization of weight of a cantilever beam, truss, shaft; optimal design of springs	CO-5	 Design optimization of springs Design of a truss for minimum weight Design of a beam/shaft for minimum weight 	 Discussion Problems solving Seminars 	Report (Week 14 - 18) Test 2 (Week 18)
ΠŎ	Test 2				