SCHEME OF COURSE WORK

Course Title	Mechanical Vibrations								
Course Code	19ME2103	L	Т	Р	С	3	0	0	3
Program	M.Tech.								
Specialization	CAD/CAM								
Semester	Ι								

Course Outcomes (COs):

At the end of the course, the student will be able to

CO1	Determine the natural frequency of transverse vibrations of the shaft and torsional vibrations of rotor systems.
CO2	Analyze the mathematical modelling of the two degrees of freedom systems and explain about the working principle of vibration absorber
CO3	Calculate the natural frequencies and mode shapes of a multi degree of freedom system and explain the modal analysis of a vibrating system.
CO4	Apply the numerical methods to determine natural frequencies of the beam and rotor systems.
CO5	Compute the natural frequencies and mode shapes of continuous systems and calculate the critical speed of the shaft.

Program Outcomes (POs):

PO	Program Outcome (PO)
Code	
PO1	acquire fundamentals in the areas of computer aided design and manufacturing
PO2	apply innovative skills and analyze computer aided design and manufacturing problems critically
PO3	identify, formulate and solve design and manufacturing problems
PO4	carry out research related to design and manufacturing
PO5	use existing and recent CAD/CAM software
PO6	collaborate with educational institutions, industry and R&D organizations in multidisciplinary teams
PO7	apply project and finance management principles in engineering projects
PO8	prepare technical reports and communicate effectively
PO9	engage in independent and life-long learning and pursue professional practice in their specialized areas of CAD/CAM
PO10	exhibit accountability to society while adhering to ethical practices
PO11	act independently and take corrective measures where necessary

Course Outcome versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO-1	S	Μ									
CO-2		S	Μ								
CO-3			S	Μ							
CO-4				S	Μ						
CO-5				М	S						

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Teaching - Learning and Evaluation

WE EK	TOPIC / CONTENTS	COU RSE	SAMPLE QUESTIONS	TEAC HING -	ASSES SMEN
		OUT COM		LEAR NING	T METH
		ES		STRA	OD &
				IE	DULE
1.	Basics of vibrations-Free and forced vibrations	CO1	1. Determine the natural frequencies of transverse vibrations of the	Lecture and	Assign ment
2.	Vibration isolation; Transverse vibrations-single concentrated load	CO1	shaft. (L3) 2. Determine the torsional natural	PPT	
3.	Uniformly distributed load, several	CO1	frequencies of single rotor, two- rotor, three rotor systems (L3)		
4.	Two degree of freedom systems, Principal modes of vibration, Two masses fixed on tightly stretched	CO1	3. Explain geared system. (L2)		
5.	Two degree of freedom systems –	CO2	1. Compute the natural frequencies	Lecture	Semina
	Principal modes of vibration	000	and mode shapes of a multi degree	and	r
6.	stretched string – double pendulum	02	 2. Explain the influence coefficients 	PPI	
7.	Torsional system with damping –	CO3	and generalized co-ordinates. (L3)		
	forced vibration with harmonic excitation		s. Determine eigenvalues and eigenvectors of three degrees of		
8.	Undamped dynamic vibration	CO4	freedom systems. (L3)		
	absorber – untuned viscous damper. Learning outcomes				
	0				
9.]	Mid - To	est 1 on CO1 and CO2		
9. 10.	Multi degree of freedom systems –	Mid - To CO3	est 1 on CO1 and CO2 1. Calculate the natural frequencies and mode shapes of a multi degree	Lecture	Assign
9. 10.	Multi degree of freedom systems – numerical methods – Rayleigh`s method – Dunkerley`s method –	Mid - To CO3	 est 1 on CO1 and CO2 1. Calculate the natural frequencies and mode shapes of a multi degree of freedom system using Rayleigh`s 	Lecture and PPT	Assign ment
9. 10.	Multi degree of freedom systems – numerical methods – Rayleigh`s method – Dunkerley`s method – Stodola's method – Rayleigh Ritz	Mid - To CO3	 est 1 on CO1 and CO2 1. Calculate the natural frequencies and mode shapes of a multi degree of freedom system using Rayleigh`s method. (L3) 2. Determine the natural frequencies 	Lecture and PPT	Assign ment
9. 10.	Multi degree of freedom systems – numerical methods – Rayleigh`s method – Dunkerley`s method – Stodola's method – Rayleigh Ritz method Method of matrix iteration –	Mid - To CO3	 est 1 on CO1 and CO2 1. Calculate the natural frequencies and mode shapes of a multi degree of freedom system using Rayleigh's method. (L3) 2. Determine the natural frequencies and mode shapes of a multi degree 	Lecture and PPT	Assign ment
9. 10. 11.	Multi degree of freedom systems – numerical methods – Rayleigh`s method – Dunkerley`s method – Stodola's method – Rayleigh Ritz method Method of matrix iteration – Holzer's method for natural	Mid - Te CO3 CO3	 est 1 on CO1 and CO2 1. Calculate the natural frequencies and mode shapes of a multi degree of freedom system using Rayleigh's method. (L3) 2. Determine the natural frequencies and mode shapes of a multi degree of freedom system using 	Lecture and PPT	Assign ment
9. 10. 11.	Multi degree of freedom systems – numerical methods – Rayleigh`s method – Dunkerley`s method – Stodola's method – Rayleigh Ritz method Method of matrix iteration – Holzer's method for natural frequencies of multi rotor systems	Mid - To CO3 CO3	 est 1 on CO1 and CO2 1. Calculate the natural frequencies and mode shapes of a multi degree of freedom system using Rayleigh's method. (L3) 2. Determine the natural frequencies and mode shapes of a multi degree of freedom system using Dunkerley's method. (L3) 3. Evaluate the natural frequencies and 	Lecture and PPT	Assign ment
9. 10. 11.	Multi degree of freedom systems – numerical methods – Rayleigh`s method – Dunkerley`s method – Stodola's method – Rayleigh Ritz method Method of matrix iteration – Holzer's method for natural frequencies of multi rotor systems	Mid - Te CO3 CO3	 est 1 on CO1 and CO2 Calculate the natural frequencies and mode shapes of a multi degree of freedom system using Rayleigh's method. (L3) Determine the natural frequencies and mode shapes of a multi degree of freedom system using Dunkerley's method. (L3) Evaluate the natural frequencies and mode shapes of a multi degree of freedom system using 	Lecture and PPT	Assign ment
9. 10. 11.	Multi degree of freedom systems – numerical methods – Rayleigh`s method – Dunkerley`s method – Stodola's method – Rayleigh Ritz method Method of matrix iteration – Holzer's method for natural frequencies of multi rotor systems	Mid - To CO3	 est 1 on CO1 and CO2 Calculate the natural frequencies and mode shapes of a multi degree of freedom system using Rayleigh's method. (L3) Determine the natural frequencies and mode shapes of a multi degree of freedom system using Dunkerley's method. (L3) Evaluate the natural frequencies and mode shapes of a multi degree of freedom system using Holzer's method. (L5) 	Lecture and PPT	Assign ment
<u>9.</u> 10. 11.	Multi degree of freedom systems – numerical methods – Rayleigh`s method – Dunkerley`s method – Stodola's method – Rayleigh Ritz method Method of matrix iteration – Holzer's method for natural frequencies of multi rotor systems	Mid - To CO3 CO3	 est 1 on CO1 and CO2 Calculate the natural frequencies and mode shapes of a multi degree of freedom system using Rayleigh's method. (L3) Determine the natural frequencies and mode shapes of a multi degree of freedom system using Dunkerley's method. (L3) Evaluate the natural frequencies and mode shapes of a multi degree of freedom system using Holzer's method. (L5) 	Lecture and PPT	Assign ment
9. 10. 11. 11.	Multi degree of freedom systems – numerical methods – Rayleigh`s method – Dunkerley`s method – Stodola's method – Rayleigh Ritz method Method of matrix iteration – Holzer's method for natural frequencies of multi rotor systems Continuous systems – vibration of strings – longitudinal vibrations of	Mid - Te CO3 CO3	 est 1 on CO1 and CO2 Calculate the natural frequencies and mode shapes of a multi degree of freedom system using Rayleigh's method. (L3) Determine the natural frequencies and mode shapes of a multi degree of freedom system using Dunkerley's method. (L3) Evaluate the natural frequencies and mode shapes of a multi degree of freedom system using Holzer's method. (L5) Calculate the natural frequencies and mode shapes of a multi degree 	Lecture and PPT Lecture and	Assign ment Semina r
9. 10. 11. 12.	Multi degree of freedom systems – numerical methods – Rayleigh`s method – Dunkerley`s method – Stodola's method – Rayleigh Ritz method Method of matrix iteration – Holzer's method for natural frequencies of multi rotor systems Continuous systems – vibration of strings – longitudinal vibrations of bars – torsional vibrations of circular shafts	Mid - Te CO3 CO3	 est 1 on CO1 and CO2 1. Calculate the natural frequencies and mode shapes of a multi degree of freedom system using Rayleigh's method. (L3) 2. Determine the natural frequencies and mode shapes of a multi degree of freedom system using Dunkerley's method. (L3) 3. Evaluate the natural frequencies and mode shapes of a multi degree of freedom system using Holzer's method. (L5) 1. Calculate the natural frequencies and mode shapes of a multi degree of freedom system using Rayleigh's method. (L3) 	Lecture and PPT Lecture and PPT	Assign ment Semina r
9. 10. 11. 11. 12.	Multi degree of freedom systems – numerical methods – Rayleigh`s method – Dunkerley`s method – Stodola's method – Rayleigh Ritz method Method of matrix iteration – Holzer's method for natural frequencies of multi rotor systems Continuous systems – vibration of strings – longitudinal vibrations of bars – torsional vibrations of circular shafts Lateral vibration of beams critical	Mid - To CO3 CO3 CO4	 est 1 on CO1 and CO2 1. Calculate the natural frequencies and mode shapes of a multi degree of freedom system using Rayleigh's method. (L3) 2. Determine the natural frequencies and mode shapes of a multi degree of freedom system using Dunkerley's method. (L3) 3. Evaluate the natural frequencies and mode shapes of a multi degree of freedom system using Holzer's method. (L5) 1. Calculate the natural frequencies and mode shapes of a multi degree of freedom system using Rayleigh's method. (L3) 2. Determine the natural frequencies 	Lecture and PPT Lecture and PPT	Assign ment Semina r
9. 10. 11. 12. 13.	Multi degree of freedom systems – numerical methods – Rayleigh`s method – Dunkerley`s method – Stodola's method – Rayleigh Ritz method Method of matrix iteration – Holzer's method for natural frequencies of multi rotor systems Continuous systems – vibration of strings – longitudinal vibrations of bars – torsional vibrations of circular shafts Lateral vibration of beams critical speeds of shafts – critical speed of a light shaft having a single disc	Mid - Te CO3 CO3 CO4	 est 1 on CO1 and CO2 1. Calculate the natural frequencies and mode shapes of a multi degree of freedom system using Rayleigh's method. (L3) 2. Determine the natural frequencies and mode shapes of a multi degree of freedom system using Dunkerley's method. (L3) 3. Evaluate the natural frequencies and mode shapes of a multi degree of freedom system using Holzer's method. (L5) 1. Calculate the natural frequencies and mode shapes of a multi degree of freedom system using Rayleigh's method. (L3) 2. Determine the natural frequencies and mode shapes of a multi degree of freedom system using Rayleigh's method. (L3) 	Lecture and PPT Lecture and PPT	Assign ment Semina r
9. 10. 11. 12. 13.	Multi degree of freedom systems – numerical methods – Rayleigh`s method – Dunkerley`s method – Stodola's method – Rayleigh Ritz method Method of matrix iteration – Holzer's method for natural frequencies of multi rotor systems Continuous systems – vibration of strings – longitudinal vibrations of bars – torsional vibrations of circular shafts Lateral vibration of beams critical speeds of shafts – critical speed of a light shaft having a single disc Without damping and with damping.	Mid - To CO3 CO3 CO4 CO4	 est 1 on CO1 and CO2 1. Calculate the natural frequencies and mode shapes of a multi degree of freedom system using Rayleigh's method. (L3) 2. Determine the natural frequencies and mode shapes of a multi degree of freedom system using Dunkerley's method. (L3) 3. Evaluate the natural frequencies and mode shapes of a multi degree of freedom system using Holzer's method. (L5) 1. Calculate the natural frequencies and mode shapes of a multi degree of freedom system using Rayleigh's method. (L3) 2. Determine the natural frequencies and mode shapes of a multi degree of freedom system using Rayleigh's method. (L3) 2. Determine the natural frequencies and mode shapes of a multi degree of freedom system using Dunkerley's method. (L3) 	Lecture and PPT Lecture and PPT	Assign ment Semina r
9. 10. 11. 11. 12. 13. 14.	Multi degree of freedom systems – numerical methods – Rayleigh`s method – Dunkerley`s method – Stodola's method – Rayleigh Ritz method Method of matrix iteration – Holzer's method for natural frequencies of multi rotor systems Continuous systems – vibration of strings – longitudinal vibrations of bars – torsional vibrations of circular shafts Lateral vibration of beams critical speeds of shafts – critical speed of a light shaft having a single disc Without damping and with damping. critical speed of a shaft having	Mid - Te CO3 CO3 CO4 CO4	 est 1 on CO1 and CO2 1. Calculate the natural frequencies and mode shapes of a multi degree of freedom system using Rayleigh's method. (L3) 2. Determine the natural frequencies and mode shapes of a multi degree of freedom system using Dunkerley's method. (L3) 3. Evaluate the natural frequencies and mode shapes of a multi degree of freedom system using Holzer's method. (L5) 1. Calculate the natural frequencies and mode shapes of a multi degree of freedom system using Rayleigh's method. (L3) 2. Determine the natural frequencies and mode shapes of a multi degree of freedom system using Rayleigh's method. (L3) 3. Evaluate the natural frequencies and mode shapes of a multi degree of freedom system using Dunkerley's method. (L3) 3. Evaluate the natural frequencies and mode shapes of a multi degree of freedom system using 	Lecture and PPT Lecture and PPT	Assign ment Semina r
9. 10. 11. 11. 12. 13. 14.	Multi degree of freedom systems – numerical methods – Rayleigh`s method – Dunkerley`s method – Stodola's method – Rayleigh Ritz method Method of matrix iteration – Holzer's method for natural frequencies of multi rotor systems Continuous systems – vibration of strings – longitudinal vibrations of bars – torsional vibrations of circular shafts Lateral vibration of beams critical speeds of shafts – critical speed of a light shaft having a single disc Without damping and with damping. critical speed of a shaft having multiple discs – secondary critical speed	Mid - Te CO3 CO3 CO4 CO4 CO4	 est 1 on CO1 and CO2 1. Calculate the natural frequencies and mode shapes of a multi degree of freedom system using Rayleigh's method. (L3) 2. Determine the natural frequencies and mode shapes of a multi degree of freedom system using Dunkerley's method. (L3) 3. Evaluate the natural frequencies and mode shapes of a multi degree of freedom system using Holzer's method. (L5) 1. Calculate the natural frequencies and mode shapes of a multi degree of freedom system using Rayleigh's method. (L3) 2. Determine the natural frequencies and mode shapes of a multi degree of freedom system using Rayleigh's method. (L3) 3. Evaluate the natural frequencies and mode shapes of a multi degree of freedom system using Dunkerley's method. (L3) 3. Evaluate the natural frequencies and mode shapes of a multi degree of freedom system using Dunkerley's method. (L3) 3. Evaluate the natural frequencies and mode shapes of a multi degree of freedom system using Dunkerley's method. (L3) 	Lecture and PPT Lecture and PPT	Assign ment Semina r

15.	Continuous systems – vibration of	CO5	1. Analyze the mathematical modeling	Lecture	Open
	strings – longitudinal vibrations of		of continuous systems. (L4)	and	Book
	bars – torsional vibrations of circular		2. Determine natural frequencies and	PPT	Exam
	shafts		mode shapes of bars and strings.		
16.	Lateral vibration of beams critical	CO5	(L3)		
	speeds of shafts – critical speed of a		3. Calculate the critical speed of shaft.		
	light shaft having a single disc		(L3)		
17.	Without damping and with damping.	CO5			
	critical speed of a shaft having				
	multiple discs – secondary critical				
	speed.				
18.	Mid	l - Test	1I on CO3, CO4 and CO5		
19/		END	EXAM on All COs		
20					