PROPOSED SCHEME OF COURSE WORK

Course Details:

Course Title	: MICROWAVE AND OPTICAL COMMUNICATION LAB						
Course Code	: 13EC1135		L	Т	Р	С	:0032
Program:	: B. Tech.						
Specialization:	: Electronics and Communication Engineering						
Semester	: VII						
Prerequisites	: Microwave Engineering, Optical Communications						
Courses to which it is a prerequisite : MICROWAVE AND ANTENNA DESIGN							

Course Outcomes (COs):

At the end of the course the student will be able to

1	Verify characteristics of Reflex Klystron
2	Analyze various parameters of Waveguide Components
3	Estimate the power measurements of RF Components such as directional Couplers
4	Demonstrate characteristics of various optical sources.
5	Measure data Rate, Numerical Aperture and Losses in Optical Link.

Course Outcome Vs Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	Μ	S	S		Μ	Μ			Μ	Μ	S	S
CO-2	S	S	S	S		S	Μ					
CO-3	S	S	S	S	Μ							
CO-4	S	S	S	S		S	Μ					
CO-5	S	S	S	S	S	S	Μ					

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assignment / Mid-Test / End Exam

Teaching-Learning and Evaluation

W ee k	TOPIC / CONTENTS	Course Outcom es	Sample questions	TEACHIN G- LEARNIN G STRATEG Y	Assessment Method
1	Introduction to Cycle-1		1.Explain different types of Microwave components	Lecture	
2.	To verify Reflex Klystron Characteristics and to determine the frequency and tuning range of reflex klystron.	CO1	1.Verify Reflex Klystron characteristics and measure tuning range of Reflex Klystron for each mode.	Lecture Analyse	Mid-I
3.	To verify Gunn Diode Characteristics.	CO1	 Verify Gunn diode characteristics and identify the negative resistance region. Obtain the frequency response characteristics of a Gunn diode. 	Lecture Analyse	Mid-I
4	To analyze the fixed and variable attenuator and plot the micrometer reading Vs attenuation.	CO2	 Measure attenuation for a given fixed attenuator. Obtain the attenuation characteristics for Variable attenuator. 	Lecture Analyse	Mid-I
5.	To determine the coupling factors and directivity of directional coupler.	CO3	1. Determine the coupling factor and directivity of Directional Coupler.	Lecture Analyse	Mid-I
6.	To measure the power distribution of various wave guide Tee Junctions.	CO2, CO3	1. When input is applied to E- plane port, measure power distribution in two other ports of E plane Tee junction. Comment on the result.	Lecture Analyse	Mid-I
7.	Design Experiment-1 using HFSS Software	CO3		Design	Assignment-1

8	Revision	CO1, CO2, CO3, CO4			
9.	Internal-1	CO1, CO2, CO3, CO4			
10.	Introduction to Cycle-2		1.Explain different types of Optical sources	Lecture Analyse	
11	VSWR Measurement and load impedance calculations using smith chart.	CO3	 Measure VSWR and Reflection coefficient for Magic Tee. Measure VSWR and Reflection coefficient for a Matched load. 	Lecture Analyse	Mid-II
12	Scattering parameters of Circulator.	CO2	1. Obtain S-matrix for Circulator. Explain how circulator can be used as Isolator.	Lecture Analyse	Mid-II
13	Characterization of Laser Diode.	CO4	1. Obtain characteristics of Laser diode.	Lecture Analyse	Mid-II
14.	Intensity modulation of Laser output through an optical fiber.	CO5	1. Obtain AC characteristics of Laser Intensity modulation system.	Lecture Analyse	Mid-II
15.	Measurement of Numerical Aperture of fiber cable.	CO5	1. Measure Numerical aperture of a given optical fiber.	Lecture Analyse	Mid-II
16	Design Experiment-2 using HFSS Software			Design	Assignment-2
17	Revision	CO3 CO3 CO5			
18.	Internal-2	CO3 CO3 CO5			
19/ 20	END EXAM	CO1 CO2 CO3 CO4 CO5			