SCHEME OF COURSE WORK

Course Details:

Course Title	: Measurements in Thermal Engineering							
Course Code	: 13ME2309	L	T	P	C	: 4	0 0	3
Program:	: M.Tech.							
Specialization:	: Thermal Engineering							
Semester	: II							
Prerequisites	:Instruments and control		•				•	

Course Outcomes (COs):

At the end of the course, student will be able to

- 1. Identify the suitable instrument for measuring transport parameters and estimate error
- 2. Detect suitable range of pressure gauge and compute its dynamic response
- 3. Distinguish different flow visualization methods and temperature measurements.
- 4. Determine thermal conductivity in solids, liquids and gases and radiation measurements
- 5. Develop transfer function of given mechanical system by using concept of control system

Program Outcomes (POs):

A postgraduates of Thermal Engineering will have the

PO 1	exhibit in-depth knowledge in thermal engineering specialization
PO 2	think critically and analyze complex engineering problems to make creative advances in theory and practice
PO 3	solve problem, think originally and arrive at feasible and optimal solutions with due consideration to public health and safety of environment
PO 4	use research methodologies, techniques and tools, and will contribute to the development of technological knowledge
PO 5	apply appropriate techniques, modern engineering tools to perform modeling of complex engineering problems with knowing the limitations
PO 6	understand group dynamics, contribute to collaborative multidisciplinary scientific research
PO 7	demonstrate knowledge and understanding of engineering and management principles and apply the same with due consideration to economical and financial factors
PO 8	communicate complex engineering problems with the engineering community and society, write and present technical reports effectively
PO 9	engage in life-long learning with a high level of enthusiasm and commitment to improve knowledge and competence continuously
PO10	exhibit professional and intellectual integrity, ethics of research and scholarship and will realize the responsibility towards the community
PO11	examine critically the outcomes of actions and make corrective measures

Course Outcome versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	M	M		M	M	S		M			M
CO2	M			M		M					
CO3	M	M	M	M		S					
CO4	M	M	M	M	M	S					
CO5		S		M	M	S		M			

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods: Assignment / Quiz / Sen	ninar / Case Study / Mid-Test / End Exam
---	--

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outcomes	Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule
1	Introduction, Instrument classification, static and dynamic characteristics of instruments	CO1	Explain the static and dynamic characteristics of instrument	□ Lecture	
2	Different types of error analysis, uncertainty, reliability of instruments	CO1	Explain different types of errors	LectureProblemsolving	Assignment- 1 (Week 2- 6)
3	Concept of resistance transducer, capacitive transducer and piezoelectric transducer	CO1	Describe piezoelectric transducer with neat sketch	LectureDiscussion	
4	Concept of photoconductive, photovoltaic, ionization and hall effect transducer	CO1	Describe hall effect transducer with neat sketch	LectureDiscussion	
5	Dynamic response considerations and Bridgman gauge	CO2	Explain Bridgman gauge with neat sketch	LectureProblem solving	
6	McLeod, Pirani thermal conductivity, Knudsen and Alphatron gauge	CO2	Explain Pirani thermal conductivity gauge with neat sketch	Lecture Discussion	
7	Flow measurement by drag effect	CO3	What are the different types of flow measurements and explain briefly	LectureDiscussion	
8	Hot wire anemometer, magnetic flow meter, flow visualization methods	CO3	Explain briefly flow visualization methods	LectureDiscussion	
9	Mid-Test 1				Mid-Test 1 (Week 9)
10	Interferometer and laser Doppler anemometer and temperature measurement by mechanical effect	CO3	Describe interferometer with neat sketch	LectureDiscussion	
11	Temperature measurement by radiation effect, transient response of thermal systems	CO3		LectureDiscussion	Assignment- 2 (Week 11- 16)
12	Thermocouple compensation and temperature measurements in high speed flow	CO3		LectureDiscussion	
13	Thermal conductivity measurement of solids, liquids and gases	CO4		LectureDiscussion	
14	Measurement of gas diffusion, convective heat transfer	CO4		LectureDiscussion	
15	measurements humidity measurements, heat flux meters	CO4		LectureDiscussion	
16	measurement of emissivity, reflectivity and transmissivity and solar radiation measurement	CO4		LectureDiscussion	
17	Introduction and classification of control systems and servo mechanism	CO5		LectureDiscussion	
18	Transfer function for different types of mechanical systems	CO5		LectureProblemsolving	
19	Mid-Test 2				Mid-Test 2 (Week 19)
20/21	END EXAM				END EXAM