SCHEME OF COURSE WORK

Course Details:

Course Title	: MODELING AND SIMULATION OF POWER ELECTRONIC SYSTEMS						
Course Code	: 15EE2213	LPC	303				
Program:	: M. Tech						
Specialization:	: Power Electronics & Drives						
Semester	: II SEM						
Prerequisites	: Power Electronics						
Courses to which it is a prerequisite :							

Course Outcomes (COs): At the end of the course students will be able to:

Derive a mathematical model of Power Electronic Devices and Understand computer simulation
techniques widely used for Power electronic Converters
Derive a mathematical model and Simulate AC-DC Converters.
Derive a mathematical model and Simulate DC-DC Converters.
Differentiate and describe the various simulation methods of analysis of power electronic systems
Design & implementation of different types of algorithms for power electronic systems

Programme Outcomes:

1.	Develop in depth knowledge in the areas of "Static Power Electronics Converters", "Power Electronic
	Converter fed Electrical Drives" and "Power Quality"
2.	Apply soft computing techniques for Power Electronic Systems and Electric Drives
3	Understand large scale Power Electronic Converter Systems, Electric Drives and issues involved through
	Modeling, Analysis and Simulation using LabVIEW- Multisim software
4.	Apply present day techniques and tools to solve Power electronic and electric drives problems relevant to
	India and other countries
5.	Use state-of-the-art simulation tools such as PLEXIM, SABER, OPAL-RT Lab, DSPACE, MULTISIM,
	LABVIEW and other tools
6	Contribute positively to collaborative and multidisciplinary research to achieve common goals
7	Demonstrate knowledge and understanding of power engineering and management principles and apply
	the same for efficiently carrying out projects with due consideration to economical and financial factors
	Communicate confidently, make effective presentations and write good reports to engineering
8	community and society
9	Recognize the need for life-long learning and have the ability to do it independently
10	Acquire knowledge on social issues and shall contribute to the community for sustainable development
11	Predict and examine critically the outcomes of actions, apply corrective measures subsequently and move
	forward positively through a self corrective approach

Course Outcome versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO-1	S	S	S	Μ	S	Μ					
CO-2	S	S	S	М	S	Μ					
CO-3	S	S	S	М	S	Μ					
CO-4	S	S	S	М	S	М					
CO-5	S	S	S	Μ	S	Μ					

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods: Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam

Teaching-Learning and Evaluation Process

Week	TOPIC / CONTENTS	Course Outcomes	Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule
	UNIT-I:INTRODUCTION AND REVIEW				
	OF MODELING OF POWER				
	ELECTRONIC DEVICES:				MCJ 1
	Overview and modeling of Power Electronic			Lactura	M10-1
	(PE) devices: Diodes, Thyristors, IGBTs,		Give the overview on different	Discussion	(week-9) Seminar
1	MOSFET;	CO1	power Electronic devices.	Discussion	(week-1)
			•	Computer	Mid-1
	Comparison of switching characteristics of		Compare the switching	aided	(week-9)
	various devices, I ransient and Steady state		characteristics of various power	modeling	Seminar
2	behaviour of PE devices	CO1	semi-conductor devices	* .	(week-2)
	COMPUTER SIMULATION OF PE		What are the challenges in	Lecture	Mid-1
	CONVERTERS: Challenges in Computer		Computer Simulation and the	Discussion	(week-9)
	Simulation, Solution techniques for time		need for model independent		Seminar
3	domain simulation	CO1	simulation environment	•	(week-3)
			What are the widely used	Lecture on	Mid-1
	Widely used circuits and / or system oriented		circuits and / or system oriented	Discussion	(week-9)
4	simulators. Choice of simulator(s).	CO1	problems		(week-4)
		001		Lecture	(WCCK +)
				followed by	
	UNIT-II: SIMULATION OF AC/ DC			hands on	
	CONVERTERS:			experience	Mid-1
	Modeling of controlled and uncontrolled ac/		Perform simulation of AC-DC	using Labview	(week-9)
5	de converters	CO 2	Converters feeding R, R-L, and	-Multisim	Seminar
5		02	K-L-E 10aus		(week-3) Mid 1
			and 3-phase AC-DC Converters		(week-9)
			feeding R. R-L. and R-L-E	Lecture	Seminar
6	single-phase & 3- phase ac/dc converters	CO2	loads	-	(week-6)

7	Other topologies for ripple current minimization and power factor improvement	CO2	Mention the topology changes needed to minimize the ripple current ad also mention the topologies for improve power factor	Lecture Discussion	Mid-1 (week-9) week-7)
8	UNIT-III: SWITCH-MODE DC / DC POWER SUPPLIES: Modeling & Simulation of Buck & Boost converters MID - I	CO3	Perform simulation of BUCK Converters. Perform simulation of BOOST converter	Lecture followed by hands on experience using Labview -Multisim	Mid-1 (week-9) Seminar (week-8)
9	Modeling & Simulation of Buck-Boost, Cuk converters and Full bridge dc/dc Converters UNIT-IV: SEQUENTIAL METHOD OF SIMULATION OF POWER ELECTRONIC SYSTEMS: Decoupled and Coupled Power Electronic Systems; Analysis of Decoupled Systems: Analysis of chopper fed DC motor	CO3	Perform simulation of BUCK- BOOST converter. Perform simulation of CUK and Full bridge dc-dc converter. Briefly explain coupled and decoupled analysis of power electronic converters	Lecture Discussion Lecture followed by hands on experience using Labview -Multisim	Mid-2 (week-9) Seminar (week-9) Mid-2 (week-9) Seminar (week-10)
12	Analysis of Inverter fed Induction Machine; Analysis of coupled systems: Synchronous Machine fed from a naturally commutated inverter	CO4	Explain the analysis of Inverter fed Induction Machine; Analysis of coupled systems: Synchronous Machine fed from a naturally commutated inverter	Lecture followed by hands on experience using Labview -Multisim	Mid-2 (week-9) Seminar (week-11)
13	Induction machine fed from a forced commutated current source inverter; computer aided analysis of machine- converter group	C04	Explain the analysis of Induction machine fed from a forced commutated current source inverter; computer aided analysis of machine-converter combination	Lecture followed by hands on experience using Labview -Multisim	Mid-2 (week-9) Seminar (week-12)
14	UNIT-V: ADVANCED TECHNIQUES: EFFICIENT COMPUTATION OF STEADY STATE PERIODIC SOLUTIONS: Definition of steady state computation problem – Newton-Raphson Method, Gradient Method, E-Algorithm for computation of steady-state solution;	C05	Explain different types of algorithms for steady state solution in power electronics	Lecture Discussion	Mid-2 (week-9) Seminar (week-13)

15	Computation of Steady-state solution in power electronic systems	CO5	Explain how to compute steady state solution in power electronic systems	Lecture Discussion	Mid-2 (week-9) Seminar (week-14)
16	Computer aided implementation of steady- state of an AC Regulator feeding RL Loads, Computation of steady-state solution of HVDC Systems,	CO5	Explain computation of steady- state of an AC Regulator, Computation of steady-state solution of HVDC Systems	Lecture Discussion	Mid-2 (week-9) Seminar (week-15)
17.		N	1ID - II		
18 &19		EN	D EXAM		