SCHEME OF COURSE WORK

Course Details:

Course Title	: MODELING AND SIMULATION O SYSTEMS (ELECTIVE-I)	F POWER ELECT	RONIC				
Course Code	: 13EE2106	LPC	:4 0 3				
Program:	: M.Tech.						
Specialization:	: Power System Control & Automation						
Semester	:I						
Prerequisites	: Power Electronics, Electrical Machines						
Courses to whic	h it is a prerequisite : Research						

Course Outcomes (COs):

After completion of the course student acquire knowledge in

CO1	Derive a mathematical model of Power Electronic Devices and computer simulation
	techniques widely used for Power electronic Converters
CO2	Derive a mathematical model and Simulation of AC-DC and DC-DC Converters
CO3	Derive a mathematical model and Simulation of DC motor drive systems
CO4	Derive a mathematical model and Simulation of Induction Drive Systems
CO5	Derive a mathematical model and Simulation of Synchronous motor drive systems

Program Outcomes (POs):

A graduate of Power System Control & Automation will be able to

1	Acquire in-depth knowledge in the area of power system control and automation.					
2	Analyze the models with respect to any kind of problem on hand and try to solve related to power					
2	system control and automation.					
3	Develop the capability of problem solving and original thinking to arrive at feasible and optimal					
5	solutions considering societal and environmental factors.					
4	Interpret and demonstrate sufficient knowledge base, to apply the techniques and tools either					
4	individually or in groups to solve power system problems.					
5	Select state-of-the-art tools for modeling, simulation and analysis of problems related to power systems.					
6	Recognize positively any collaborative and multidisciplinary research to achieve common goals.					
	Demonstrate knowledge and understanding of power system engineering and management principles					
7 and apply the same for efficiently carrying out projects with due consideration to economical a						
	financial factors.					
8	Communicate confidently, make effective presentations and write good reports to engineering					
0	community and society.					
9	Recognize the need for life-long learning and have the ability to do it independently.					
10	Understand Social responsibilities and follow ethical practices to contribute to the community for					
10	sustainable development.					
11	Predict and self examine critically the outcomes of actions, reflect on to make corrective measures and					
11	move forward positively.					

Course Outcome Versus Program Outcomes:

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO-1	М	М	Μ	S	S		М				
CO-2	М	М	М	S	S		М				
CO-3	М	Μ	М	S	S		М				
CO-4	М	М	М	S	S		М				
CO-5	М	М	М	S	S		М				

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods: Assignment / Quiz / Ser

Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outcomes	Sample questions	TEACHING- LEARNING STRATEGY	Assessmen t Method & Schedule	
1	Overview and modeling of Power Electronic (PE) devices: Diodes, Thyristors, IGBTs, MOSFET,	CO-1	Demonstrate the Model for MOSFET. Demonstrate the Model for IGBT	 Lecture Discussion 	Mid-Test 1 (Week 9) Seminar (Week 2)	
2	Comparison of switching characteristics of various devices Transient and Steady state behaviour of PE devices	CO-1	Compare the switching characteristics of various devices	 Lecture Discussion 	Mid-Test 1 (Week 9) Seminar (Week 2)	
3	Challenges in Computer Simulation Solution techniques for time domain simulation	CO-1	What are the challenges in computer simulation solution techniques for time domain simulation	LectureDiscussion	Mid-Test 1 (Week 9) Seminar (Week 3)	
4	widely used circuits and / or system oriented simulators. Choice of a simulator	CO-1	What are widely used simulators. Describe the choice of a simulator.	 Lecture Discussion 	Mid-Test 1 (Week 9) Seminar (Week 4)	
5	Modeling of controlled and uncontrolled ac/ dc converters; single- phase & 3- phase ac/dc converters; other topologies for ripple current minimization and power factor improvement	CO-2	Model the single phase AC- DC converter. Explain how the power factor is improved?	 Lecture Discussion 	Mid-Test 1 (Week 9) Seminar (Week 5)	
6	Modeling & Simulation of dc/dc converters such as Buck, Boost, Buck- Boost	CO-2	Explain how simulation of DC/DC converter is performed.	 Lecture Demonstration 	Mid-Test 1 (Week 9) Seminar (Week 6)	
7	Modeling & Simulation of Cuk and Full bridge dc/dc Converters.	CO-2	Explain how simulation of Cuk converter is performed.	 Lecture Demonstration 	Mid-Test 1 (Week 9) Seminar (Week 7)	
8	Equivalent circuits for DC motors, DC	CO-3	Draw the equivalent	□ Lecture	Mid-Test 1	

	motors with a separately excited field winding,		circuits for separately excited DC motors and	Discussion	(Week 9) Seminar
	neiu winding,		obtain its transfer function.		(Week 8)
9	Mid-Test 1				
10	DC servo drives and their control, Adjustable speed dc Drives,	CO-3	With the help of block diagram explain the speed control of DC servo motor.	 Lecture Discussion Problem solving 	Mid-Test 2 (Week 18) Seminar (Week 10)
11	Effect of discontinuous current, Field weakening effects	CO-3	What is the effect of Discontinuous current for the converter fed DC motor drive	 Lecture Discussion 	Mid-Test 2 (Week 18) Seminar (Week 11)
12	Induction motor characteristics at rated frequency and rated voltage	CO-4	Draw the Induction motor Torque-slip characteristics	 Lecture Discussion 	Mid-Test 2 (Week 18) Seminar (Week 12)
13	simulation of variable frequency voltage source square wave / PWM drives	CO-4	Explain how the simulation of V/F control of Induction motor is obtained for a given simulator.	 Lecture Demonstration 	Mid-Test 2 (Week 18) Seminar (Week 13)
14	CSI drive simulation	CO-4	Explain how the simulation of CSI fed Induction motor drive is obtained for a given simulator.	LectureDemonstration	Mid-Test 2 (Week 18) Seminar (Week 14)
15	Principles of synchronous motor operation;	CO-5	Explain the principle of Synchronous motor with a neat sketch.	LectureDiscussion	Mid-Test 2 (Week 18) Seminar (Week 15)
16	Brushless dc motor drive operation, synchronous motor servo drive simulation,	CO-5	Explain the operation of Brushless dc motor drive with a neat sketch. Explain how simulation of synchronous motor servo drive is obtained for a chosen simulator.	 Lecture Demonstration 	Mid-Test 2 (Week 18) Seminar (Week 16)
17	Load commutated synchronous motor drive.	CO-5	Explain the operation of load commutated synchronous motor drive.	 Lecture Demonstration 	Mid-Test 2 (Week 18) Seminar (Week 17)
18	Mid-Test 2				
19/20	END EXAM				