SCHEME OF COURSE WORK

Course Details:

Course Title	MODELLING OF POWER SYSTEM COMPONENTS							
Course Code	15EE2105 L T P C 3 1 0						0	3
Program	M.Tech.							
Specialization	Power System and Control Automation							
Semester	Ι							
Prerequisites	Electrical Machines, Power Systems							
Courses to which it is a prerequisite	e Power System Design							

Course Outcomes (CO's):

CO 1	Analyze synchronous machine dynamics.
CO 2	Analyze and model a synchronous machine.
CO 3	Analyze and model an Exciter and Turbine.
CO 4	Analyze and model System Load.
CO 5	Analyze Stability Studies.

Program Outcomes (POs):

A graduate of M.Tech (PSCA) will be able to

1	Acquire in depth knowledge in the area of power system control and automation.
2	Attain the ability to prepare models with respect to any kind of problem on hand and try to solve
	related to power system control and automation.
3	Obtain the capability of problem solving and original thinking to arrive at feasible and optimal
	solutions considering societal and environmental factors.
4	Have sufficient knowledge base, sufficient to apply the techniques and tools to solve power system
	problems.
5	Use the state-of-the-art tools for modeling, simulation and analysis of problems related to power
	systems.
6	Attain the capability to contribute positively to collaborative and multidisciplinary research to
	achieve common goals.
7	Demonstrate knowledge and understanding of power system engineering and management
	principles and apply the same for efficiently carrying out projects with due consideration to
	economical and financial factors.
8	Communicate confidently, make effective presentations and write good reports to engineering
	community and society.
9	Recognize the need for life-long learning and have the ability to do it independently.
10	Become socially responsible and follow ethical practices to contribute to the community for
	sustainable development of society.
11	Independently observe and examine critically the outcomes of his actions and reflect on to make
	corrective measures and move forward positively.

Course Outcomes versus Program Outcomes:

	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11
CO 1			Μ	S							
CO 2		S			S		Μ				
CO 3		S			S		Μ				
CO 4		S			S		Μ				
CO 5	Μ		Μ	S				S			

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam

Week	Topic / Contents	Course	Sample	Teaching-	Assessment
		Outcomes	Questions	Learning	Method &
				Strategy	Schedule
1	SYNCHRONOUS	CO-1		Lecture	Assignment
	MACHINE ANALYSIS				(Week-2)
	Representation of				
	Synchronous Machine				
	Dynamics				
2	Stator and rotor winding	CO-1		Lecture	
	voltage equations and flux			Problem solving	
	linkages				
3	Synchronous Machine	CO-1	Park's	Lecture	
	Dynamics in Synchronous		Transformation	Problem solving	
	Reference Frame				
4	Per Unit Representation,	CO-1	Selection of base	Lecture	Quiz
	Stator and rotor winding		values for rotor	Problem solving	(Week 4)
	voltage equations and flux		circuits		
	linkage equations in per units				
5	MODELING OF	CO-2		Lecture	Assignment
	SYNCHRONOUS			Problem solving	(Week-6)
	MACHINE				
	Sub transient and transient				
	reactance				
6	Open circuit sub-transient and	CO-2	Magnetic	Lecture	
	transient time constants, Effect		saturation	Problem solving	
	of saturation on synchronous				
	Machine Modeling				
7	Estimation of Synchronous	CO-2	Operational	Lecture	
	Machine Parameters through		Parameters	Problem solving	
	Operational Impedance				
8	MODELING OF EXCITER	CO-3		Lecture	Assignment
	AND TURBINE				(Week-10)
	Exciter, IEEE Type DC1A				
9	MID TEST - 1	CO-1 &			
		CO-2			

Teaching-Learning and Evaluation

10	Model of Turbine - Hydro	CO-3	Turbine Models	Lecture	
	Turbine, Steam Turbine			Problem solving	
11	Turbine governor	CO-3		Lecture	
				Problem solving	
12	MODELLING OF SYSTEM	CO-4		Lecture	Assignment
	LOAD			Problem solving	(Week-13)
	Load Representation				
13	Static load representation	CO-4		Lecture	
				Problem solving	
14	Model of synchronous motor,	CO-4	Induction Motors	Lecture	Quiz
	Model of induction motor.				(Week-14)
15	MODELLING	CO-5		Lecture	Assignment
	CORELATED TO				(Week-16)
	STABILITY STUDIES				
	Steady State Condition				
16	Multi-Machine System	CO-5	Multi-Machine	Lecture	
	Representation, Special		Systems	Problem solving	
	case of impedance loads				
17	Sub-transient Model with	CO-5	Sub-Transient	Lecture	
	Stator and Network		Model	Problem solving	
	Transients Neglected				
18	MID TEST - 2	CO-3,			
		CO-4 &			
		CO-5			
19/20	END EXAM				