SCHEME OF COURSE WORK

Course Details:

Se Detunist								
Course Title	: LOW POWER VLSI DESIGN							
Course Code	: 13EC2211 L T P C :4 0 0 3							
Program:	: M. Tech							
Specialization:	: VLSI Design and Embedded Systems							
Semester	:I							
Prerequisites	:VLSI TECHNOLOGY AND DESIGN							
Courses to which it is a prerequisite : ANALOG IC DESIGN								

Course Outcomes (COs):

1	Illustrate the design limitations of Low Power VLSI Design and Evolution of SOI Technologies.
2	Describe various integration and isolation techniques for MOS/Bi-CMOS Technologies.
3	Obtain proficiency in parameter extraction of Bi-polar, MOSFETS using SPICE and Advanced MOSFET models.
4	Design and analyze Conventional CMOS and Bi-CMOS logic gates.
5	Design low voltage, low power Bi-CMOS logic circuits to achieve High Performance.

Course Outcome Vs **Program Outcomes:**

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO-1	S	S	S	S	S	S			Μ		М
CO-2	S	S	S	S	S	S			М		М
CO-3	S	S	S	S	S	S			М		М
CO-4	S	S	S	S	S	S			М		М
CO-5	S	S	S	S	S	S			Μ		М

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outcomes	Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule
1	UNIT-I	CO-1	1.Explain the	Lecture	Mid-
	Introduction, Overview &		advantages of low	Discussion	I/Assignment -
	Importance of Low Power		power requirement in		I
	VLSI Designs, Low Power		VLSI?		
	Design Limitations: Power		2. Discuss the		
	supply voltage, Threshold		limitations of low power		
	voltage, Scaling, Interconnect		design?		
	wires.		3. Explain how Bi-		

			CMOS technology is useful for low power VLSI?		
2	Silicon-on-Insulator (SOI) From Devices to Circuits. UNIT-II Realization of Bi-CMOS processes, Bi-CMOS manufacturing and Integration Considerations: Hot carrier Effect and methods to overcome it.	CO-2	1.Explain with neat structures the construction of :i) SBC Bi-CMOS structure.ii) Twin-well Bi-CMOS structure?	 Lecture Discussion 	Mid- I/Assignment - I
3	Production of Graded-drain structures, Phosphorus drain structures, Double diffused drain structures, Lightly doped drain structures.	CO-2	Discuss the process considerations for BJTs in the fabrication of Bi- CMOS devices?	 Lecture Discussion 	Mid- 1/Assignment - 1
4	Isolation in Bi-CMOS: Deep trench techniques, LOCOS Structures, Advanced Isolation techniques.	CO-2	Explain junction isolation and LOCOS isolation techniques?	 Lecture Discussion 	Mid- I/Assignment - I
5	Typical modern processing steps and high performance Bi- CMOS structures, Future trends and directions of CMOS/Bi- CMOS processes.	CO-3	What are the future trends and directions of CMOS/Bi- CMOS processes?	 Lecture Discussion Power point lectures 	Mid- I/Assignment - I
6	UNIT-III The MOS (FET) Transistor, The Bipolar (Junction) transistor, Device Fabrication	CO-3	Discuss the salient features of level-1 and level-2 models for simulating the performance of MOSFETs?	 Lecture Discussion Power point lectures 	Mid- I/Assignment - I
7	MOSFET Simulation models: Level 1,2,3,14, Advanced BSIM Models, Eber-Moll model, H- Spice level-50 model, EKV MOSFET Model.	CO-3	Explain the Ebers-Moll model for BJTs with equivalent circuits.	 Lecture Discussion Programmin g 	MidII/ /Assignment II/SEMINAR
8	Bipolar Spice models: Gummel- poon model, and its modified model.	CO-3	Explain the Gummel- poon model for BJTs with equivalent circuits.	 Lecture Discussion Power point lectures 	MidII/ /Assignment II/SEMINAR
9	Mid-Test 1	CO-1, CO-2 &CO-3			

10	Sub-half micron devices, MOSFET in Hybrid mode Environment – Surface p – channel for Sub-half-Micron Devices.	CO-3 CO-3	Discuss the characteristics of MOSFET in Hybrid mode Environment?	 Lecture Discussion Power point lectures 	MidII/ /Assignment II/SEMINAR MidII/
	parameters Extraction, Sub- Half-Micron D.C. Model Formulation.		experimental characterization of sub- half micron MOS devices?	 Discussion Power point lectures 	/Assignment II/SEMINAR
12	UNIT-IV Conventional CMOS Logic gates, Conventional Bi-CMOS Logic gates, their power dissipation and characteristics	CO-4	Explain the working of a basic conventional Bi- CMOS inverter?	 Lecture Discussion Power point lectures 	MidII/ /Assignment II/SEMINAR
13	Bi-CMOS Circuits Utilizing Lateral PnP BJTs in PMOS structures, Performance Evaluation and Comparison.	CO-4	Illustrate the construction of lateral PnP BJT in PMOS Structure and explain the current components in such a device in its hybrid-mode environment?	 Lecture Discussion Power point lectures 	Mid II/ /Assignment II/SEMINAR
14	UNIT-V Merged Bi-CMOS digital circuits, Full-Swing Multidrain/ Multicollector Complementary Bi-CMOS Buffers.	CO-5	Explain about Merged Bi-CMOS digital circuits?	 Lecture Discussion Power point lectures 	MidII/ /Assignment II/SEMINAR
15	Quasi-complementary Bi- CMOS Digital circuits, Full- Swing Bi-CMOS /Bi-NMOS Digital circuits employing Schottky Diodes, Feedback type Bi-CMOS digital circuits.	CO-5	Discuss the basic driver circuits and their modifications to obtain the full swing complementary MOS Bipolar logic (FS- CMBL) circuits?	□ Lecture □ Discussion	MidII/ /Assignment II/SEMINAR
16	High-Beta Bi-CMOS digital circuits, Transiently saturated Full-Swing Bi-CMOS Digital circuits, ESD-free Bi-CMOS Digital circuit- circuit operation and comparative Evaluation.	CO-5	Explain the principle of ESD-Free Bi-CMOS circuit?	 Lecture Discussion 	MidII/ /Assignment II/SEMINAR
17	Evolution of Latches and Flip- Flops, Quality measures for Latches and Flip-Flops and Design Perspective.	CO-5	What are different quality measures for Latches and Flip-Flops?	 Lecture Discussion 	MidII/ /Assignment II/SEMINAR
18	Mid-Test 2	СО-3,			

		CO-4& CO-5		
19/20	END EXAM			