SCHEME OF COURSE WORK

Faculty : Dr.M.V.S.Sairam, Professor, ECE

Course Details:

Course Title	:	INFORMATION THEORY AND CODING						
Course Code	:	13EC2109 L T P C : 4 0 0 3						
Program:	:	M.Tech.						
		(COMMUNICATION ENGINEERING AND SIGNAL PROCESSING)						
Specialization:	:	Electronics and Communication Engineering						
Semester	:	II SEM						
Prerequisites	:	Probability Theory, Digital Communications						
Courses to	:	Wireless Commutations, Satellite Communications						
which it is a								
prerequisite								

Course Outcomes (COs):

CO ₁	:	Design the channel performance using Information theory						
CO ₂ CO ₃	:	Comprehend various error control code properties Apply linear block codes for error detection and correction						
CO ₄	:	Apply convolution codes for performance analysis & cyclic codes for error detection and correction						
CO 5	:	Design BCH & RS codes for Channel performance improvement against burst errors.						

Course Outcome Vs Program Outcomes:

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁₀	PO ₁₁
CO ₁	S	S	S	S	S	S	S	S	S	Μ	
CO ₂	S	S	Μ	S	Μ	S	S		S		
CO ₃	S	S	Μ	S	Μ	Μ			S		
CO ₄	S	Μ	Μ	S	Μ	Μ			S		
CO ₅	S	Μ	Μ	S	Μ	Μ			S		

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods

Assignment / Seminar / Case Study / Mid-Test / End Exam

Teaching-Learning and Evaluation

Week	Topic / Contents	Cour se Outc omes	Sample questions	Teaching- Learning Strategy	Assessment Method & Schedule				
UNIT-I: INFORMATION THEORY									
1	Entropy, Information rate, source coding: Shannon-Fano and Huffman coding techniques	CO1	 Define Entropy and Information rate Calculate efficiency using Shannon-Fano and explain with example 	LectureDemo	Mid-1/Assignment -1				
2	Mutual Information, Channel capacity of Discrete Channel	CO1	1.write a short notes on i) Mutual information and ii) channel capacity of discrete channel	 Lecture Problem solving 	Mid-1/Assignment -1				
3	Shannon- Hartley law, Trade-off between bandwidth and SNR.	CO1	1a) Derive Shannon-Hartleylaw1b) Explain about Trade-offbetween bandwidth and SNR	 Lecture 	Mid-1/Assignment -1				
UNIT-II : ERROR CONTROL CODES									
4	Examples of the use of error control codes, basic notations	CO ₂	1a)Explain about error controlcodes with example1b)construct (7,4) hammingcode for all possible 4bitinformation bits	 Lecture 	Mid-1/Assignment -1				
5	Coding gain, Characterization of Error control codes	CO ₂	1. Explain about coding gain and draw the graph between E_b/N_o and BER2. Explainabout characterizationcharacterizationofError control codes	Lecture	Mid-1/Seminar -1				
6	Performance of error control codes, comparison of uncoded and coded systems	CO ₂	1a) Comparison of uncoded and coded systems1b) Explain the properties of error control codes	Lecture	Mid-1/Seminar -1				
7	MID-I		CO1 and CO ₂		MID TEST-I				
UNIT-III : LINEAR BLOCK CODES									
8	Linear block codes and their properties, standard arrays	CO ₃	1.a) Write a short notes on Linear block codes and explain about their properties1b) write a short notes on standard array	Lecture	Mid-2/Seminar -2				
9	Syndromes, weight distribution	CO ₃	1.Explain weight distribution	[•] Lecture	Mid-2/Seminar -2				

18/19	END EXAM								
17	$\mathbf{MID} \cdot \mathbf{II} \qquad \qquad \mathbf{CO}_3, \mathbf{CO}_4 \text{ and } \mathbf{CO}_5 \qquad \qquad \mathbf{MID} \ \mathbf{TEST} \cdot \mathbf{II}$								
16	Decoding Algorithms for BCH and RS Codes	CO ₅	1. Explain decoding algorithms for BCH and RS codes by considering example	 Lecture Discussion 	Mid-2/Assignment -2				
15	Frequency Domain Description	CO ₅	1. Explain about frequency domain description of BCH and RS codes	 Lecture Discussion 	Mid-2/Assignment -2				
UNIT- 14	V : BCH AND RS CODES Algebraic Description	CO ₅	 write a short notes on i) BCH codes ii) RS codes 	 Lecture Discussion 	Mid-2/Assignment -2				
13	Shortened Cyclic codes, CRCs for Error Detection	CO_4	1.Explain about cyclic codes	 Lecture Discussion 	Mid-2/Assignment -2				
12	Viterbi algorithm, performance analysis. CYCLIC CODES: General theory, Shift Register Implementations	CO ₄	1. Explain about viterbi algorithm with the help of example	 Lecture Discussion 	Mid-2/Assignment -2				
11	Convolution encoders, structural properties of convolution codes, trellis diagrams	CO ₄	1a) Explain about convolution encoder1b) Explain the properties of convolution encode2)Draw the trellis diagram by considering any example	 Lecture Discussion 	Mid-2/Assignment -2				
UNIT-1	UNIT-IV: CONVOLUTION CODES								
10	Error detection/correction properties, modified linear block codes.	CO ₃	1.Explain about error detection/correction properties						