SCHEME OF COURSE WORK

COURSE DETAILS:

Course Title	Introduction to Signals and Systems
Course Code	13EE1107
Program	B.Tech
Branch	Electrical & Electronics Engineering
Semester	IV
Prerequisites	Mathematics-I, II & III
Course to which it is prerequisite	All Advanced Courses In Electrical Engineering

COURSE OUTCOMES: At the end of the course, a student will be able to

CO1	Classify various types of signals and systems, represent and manipulate signals
CO2	Apply Fourier series and Fourier Transform for signal analysis
CO3	Apply sampling theorem to sample and reconstruct an analog signal
CO4	Illustrate what happens when signals pass through linear systems
CO5	Analyze LTI systems using Z-transforms.

COURSE OUTCOME/PROGRAM OUTCOMES:

CO'S	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12
CO-1	М	М		S	М	М	Μ		М			М
CO-2	М	М		S	М	М	Μ		Μ			М
CO-3	М	М		S	М	М	Μ		Μ			М
CO-4	М	М		S	М	М	Μ		Μ			М
C0-5	М	М		S	М	М	Μ		Μ			М

Assessment Methods	Assignments/Quiz/Mid Exam/Seminar/Viva-Voce/End Exam

TEACHING LEARNING AND EVALUATION

We	Topic/content	Course	Sample questions	Teaching-	Assesment
ek		outcom		learning	method &
		es		stategy	schedule

1	Unit-I SIGNALS: Introduction, Signals, Basic continuous time signals & Discrete time signals, Basic Operations on	CO-1	 Define Signal. What are the major classifications of the signal? Define discrete time signals and classify them. Define continuous time signals and classify them. Define discrete time unit step & unit impulse. Define continuous time unit 	Lecture/ Discussion/ problem solving/Power Point Presentation	Assignm ent-1 & quiz- 1
	signals		step and unit impulse. 7. Define unit ramp signal. 8. Define unit pulse function. 9. 1. For the signal x(t) shown in figure find and sketch the following signals x(t)		
We ek- 2	Continuous time systems and Discrete time systems, properties of systems	CO-1	2. Find which of the following signal energy is or power signals a). $x(t)=e^{-3t} u(t)$ b) $x(n) = e^{j(2n+1/4)}$ 3. Examine whether the following signals are periodic or not? If periodic determine the fundamental period. x(t) = sin (10t + 1) - 2 cos (5t - 2) b). $x(t) = j[4t + (\Pi / 3)] j[3\Pi t + (\Pi / 4)]$ e + 8e	Lecture/ Discussion/ problem solving/Power Point Presentation	Assi gnm ent-1 & quiz- 1
We	The representation of		1. Obtain the convolution of		

ek- 3	Signals in terms of Impulses, Continuous Time – LTI systems, Convolution integral, Discrete Time LTI systems, Convolution Sum, Properties of LTI systems,	CO-1	following two functions a) $x(t) = \begin{cases} 1 & for - 3 \le t \le 3 \\ 0 & elsewhere \end{cases}$ h(t) $= \begin{cases} 2 & for 0 \le t \le 3 \\ 0 & elsewhere \end{cases}$ b) $x_1(t) = \cos t u(t) h_1(t) = u(t)$ 2. Test whether the following system is Linear, time invariant, dynamic and causal $y(t) = \frac{d (e^{-2t} x(t))}{dt}$ 3. Test whether the following system is Linear, time invariant, dynamic and causal i) $y(n)=x(n)+nx(n-1)$ 2. Find the convolution of $x(n) = \cos(n)u(n)$, $h(n) = (1/2)^n u(n)$	Lecture/ Discussion/ problem solving/ Power Point Presenta tion	Assignm ent-1 & quiz- 1
We ek- 4	Systems described by Differential and Difference Equations, Block Diagram Representation of LTI systems described differential	CO-1	1). Find the output y(n) of a linear time invariant discrete time system specified by the equation. $y(n)-3/2y(n-1) + 1/2 \ y(n-2) =$ $2x(n) + 3/2 \ x(n-1) $ when initial conditions are y(-1) =0,y(-2) = 1 and input x(n)=(1/4)n u(n) 2.) Determine the complete response of the system described by $\frac{d^{2}y(t)}{dt^{2}} + 7 \frac{dy(t)}{dt} + 6y(t) = \frac{dx(t)}{dt};$ $y(0)=0; \ \frac{dy(t)}{dt} = 1$ for the input x(t) = e ^{-2t} u(t).	Lecture/ Discussion/ problem solving/Power Point Presentation	Assignm ent-1 & quiz- 1
We ek- 5	UNIT-II FOURIER SERIES & FOURIER TRANSFORM	CO-2	1). For the Continuous time periodic signal $x(t) = 2 + \cos 2t + \sin 4t$,	Lecture/ Discussion/ problem solving/Power Point Presentation	Assignmen t-1 & quiz- 1

	Fourier series representation of continuous time periodic signals		determine the fundamental frequency and exponential Fourier series coefficients and draw frequency spectra 2.) Obtain Trigonometric Fourier series for the given signal		
We ek- 6	Properties of Fourier series. Representation of periodic signals: CT Fourier transform Fourier transform of periodic signals	CO-2	 State and prove properties of Fourier series Find the Fourier transform of following signals a) x(t) = x^{at}u(-t) b) x(t) = te^{-at}u(t) Find the inverse Fourier transform of following signals i) = (1+250) (30)²+5(50)+6 ii) = (1+250) (30)²+5(50)+6 	Lecture/ Discussion/ problem solving/Power Point Presentation	Assignm ent-1 & quiz- 1
We ek- 7	Properties of continuous time Fourier transform	CO-2	3. Compute the Fourier transform for the signal shown in figure	Lecture/ Discussion/ problem solving/Power Point Presentation	Assignment -1 & quiz- 1

			4.210		
			 2). State and prove the properties of CT Fourier transform 3. Find Fourier transform by using properties of Fourier transform 		
We	UNIT-III SAMPLING ·	CO-3	Explain the process of	Lecture/	Assignm
8	Introduction,		representation of continuous	problem	quiz-2
	representation of		time signals by its samples	solving/Power	_
	continuous time			Point Presentation	
	signals by its			resentation	
We	samples MID TEST_1	CO			
ek-	MID ILSI-I	1,CO-			
9		-2,			
We ek- 10	Sampling theorem	CO-3	1). State and prove the sampling theorem. Also explain how reconstruction of original signal is done from sampled signal in detail	Lecture/ Discussion/ problem solving/Power Point Presentation	Assignm ent-2 & quiz- 2
			2). Determine the Nyquist sampling rate and Nyquist sampling intervals for x(t) = sinc($200\pi t$) + $3sinc^2(120\pi t)$		
We	The effect of under	CO-3	Explain the effect of under	Lecture/	Assignm
ek-	sampling : aliasing		sampling i.e aliasing in detail	Discussion/	ent-2 &
				solving/Power Point	2
117	TINT## 117		1) 6	Presentation	
we	UNIT-IV	0.4	1). for a system excited by $x(t) = e^{-3t}$	Lecture/ Discussion/	
				problem solving	

ek-	SIGNAL		u(t), the impulse response is h(t) =		Assignm
12	TRANSMISSION		$e^{-2t}u(t) + e^{2t}u(-t)$ find the Output		ent-2 &
	THROUGH		of the system		quiz-2
	LINEAR		of the system		
	SYSTEMS: Linear systems,		2. A system produces an output of $y(t) = e^{-t} u(t)$ for an input of $y(t) = e^{-t}$		
	Impulse response,				
	response of a linear		² u(t). Determine the impulse		
	system, LTI system,		Response and frequency of the		
	Transfer function of		system		
	L11 system,				
We	Filter characteristics	CO-4	1) Explain filter characteristics	Lecture/	Assignm
ek-	of linear systems	00 +		Discussion/	ent-2 &
13	Distortionless		of linear systems	problem solving	quiz-2
	transmission through		2 Explain concept of		
	a system, signal band		Distortionless		
	width				
			transmission through a		
			system		
We	Ideal LPF, BPF, and	CO-4	1). Explain Ideal LPF, BPF,	Lecture/	Assignm
ek-	HPF characteristics,		and HPF characteristics	Discussion/	ent-2 &
14	Causality and Poly –			problem solving	quiz-2
	whener criterion for		2). Explain Poly –wiener		
	physical realisation		criterion for physical realisation		
We	UNIT-V	CO-5	1). Define Z	Lecture/	Assignm
ek-	THE Z-		transform.	Discussion/	ent-2 &
15	TRANSFORM & PROPERTIES		what are the two types of Z transform?	problem solving/Power	quiz-2
	Introduction The Z-		Define unilateral Z transform	Point	
	transform		What is region of	Presentation	
	Region of		Convergence. What are the		
	Convergence for the		Properties of ROC.		
	Z-transform		2. Find the Z-transform and ROC of		
			$x(n) = 3\binom{5}{7}^{n} u(n) + 2\binom{-1}{3}^{n} u(n)$		
			Prove that the sequences		
			$x_i(n) = a^n u(n)$ and		
			$x_{2}^{1}(n) = -a_{n}u(-n-1)$ have same		
			X (z) but differ only in ROC.		

			Also plot their ROC		
We ek- 16 We ek- 17	Properties of Z- transform, Inverse Z- transform Analysis and characterization of linear time invariant systems using Z- transforms	CO-5	1). State and prove properties of Z-transform 2.) Find the inverse Z-transform of $X(z) = \frac{z^{-1}}{2}$, for, ROC $z^{-2} - 4z^{-1} + 3$ using partial fraction method 1). Plot the pole-zero pattern and determine which of the following systems are stable a) $y(n)=y(n-1)-0.8y(n-2)+x(n)+x(n-2)$ b) $y(n)=2y(n-1)-0.8y(n-2)+x(n)+x(n-2)$ b) $y(n)=2y(n-1)-0.8y(n-2)+x(n)+x(n-2)$ b) $y(n)=2y(n-1)-0.8y(n-2)+x(n)+x(n-2)$ causal system and discuss on system stability Y(n)+y(n-1)-y(n-2)=x(n-1)+2x(n-2) 3. A LTI system is described by the difference equation Y(n)-3/4y(n-1)+1/8y(n-2)=x(n)+x(n-1) Find the total response of the	Lecture/ Discussion/ problem solving/Power Point Presentation Lecture/ Discussion/ problem solving/Power Point Presentation	Assignm ent-2 & quiz- 2 Assignm ent-2 & quiz- 2
			response		
We ek- 18	MID Exam-2	CO- 3,CO - 4,CO -5			
We ek- 19, 20	End Exam	All co's			Exte rnal exa m