SCHEME OF COURSE WORK

Course Details:

Course Title	: INDUSTRIAL ROBOTICS							
Course Code	: 13ME2114 L T P C : 4	0	03					
Program:	: M.Tech.							
Specialization:	: CAD/CAM							
Semester	: II							
Prerequisites	: ROBOTICS							
Courses to whic	ch it is a prerequisite : AUTOMATION IN MANUFACTURING							

Course Outcomes (COs):

At the end of the course, the student will be able to

- 1. analyze the manipulator design including actuator, drive and sensor issues
- 2. calculate the forward kinematics, inverse kinematics and Jacobian for serial and parallel robots
- 3. identify different types of end effectors and sensors required for specific applications
- 4. develop programming principles and languages for a robot control system
- 5. discuss various applications of industrial robot systems

Program Outcomes (POs)

At the end of the program, the students in CAD/CAM will be able to

- 1. acquire fundamentals in the areas of computer aided design and manufacturing
- 2. apply innovative skills and analyze computer aided design and manufacturing problems critically
- 3. identify, formulate and solve design and manufacturing problems
- 4. carry out research related to design and manufacturing
- 5. use existing and recent CAD/CAM software
- 6. collaborate with educational institutions, industry and R&D organizations in multidisciplinary teams
- 7. apply project and finance management principles in engineering projects
- 8. prepare technical reports and communicate effectively
- 9. engage in independent and life-long learning and pursue professional practice in their specialized areas of CAD/CAM
- 10. exhibit accountability to society while adhering to ethical practices
- 11. act independently and take corrective measures where necessary

Course Outcome versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO-1	М	М	S	S							
CO-2			S	S							
CO-3		М	S	S			М				
CO-4			S	S	S		М		М		
CO-5			S	S	S				S		S

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods:

Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outcomes	Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule	
1	Introduction: Automation and robotics, Robot anatomy, Robot configuration motions	CO-1	Explain the difference between automation and robotics?	LectureDemo class		
2	Robot drive systems, Control systems and dynamic performance, precision of movement	CO-1	Discuss in brief about the control systems and dynamic performance of a robot?	LectureDiscussion		
3	Controllers, control system analysis, Robot activation and feedback components	CO-1	Explain the types of controllers and analysis of a controller?	LectureDiscussion		
4	Position sensors, velocity sensors, actuators, power transmission systems	CO-2 & CO-3	Differentiate between position and velocity sensors?	LectureDiscussion		
5	Motion analysis and control: Manipulator kinematics	CO-2 & CO-3	Explain the analysis of Manipulator kinematics of a robot?	 Lecture Discussion Problem solving 		
6	Position representation - forward transformation, homogenous transformations	CO-3	What is meant by a forward transformation and a homogenous transformation?	 Lecture Discussion Problem solving 		
7	Manipulator path control - robot dynamics,	CO-1 & CO-3	Explain in brief about dynamics of a robot with necessary equations?	LectureDiscussion	Case study- 1 (Week 7)	
8	Configuration of a robot controller	CO-1	Draw the sketch of configuration of a robot controller?	LectureDiscussion	Seminar - 1 (Week 8)	
9	Mid-Test 1				Mid-Test 1 (Week 9)	
10	End effectors: Grippers-types, operation, mechanism, force analysis	CO-2 & CO-3	Write about the types and operations produced by a gripper?	 Lecture Discussion Problem solving 		
11	Tools as end effectors, considerations in gripper selection and design	CO-2 & CO-3	Explain the considerations in gripper selection and design?	LectureDiscussion		
12	Sensors: Desirable features, tactile, proximity and range sensors, uses of sensors in robotics	CO-2	Write about the uses of sensors in robotics?	 Lecture Discussion Problem solving 		
13	Machine vision: Functions and robotics applications in machine vision systems	CO-2 & CO-3	Explain the functions and applications of a machine vision system with a neat sketch?	□ Lecture		
14	Robot programming and Languages, WAIT, SIGNAL and DELAY commands	CO-4	Write about the languages used for robot programming?	LectureDiscussion		
15	Robot language structures, elements in functions.	CO-4	Draw the structure of a robot language system by showing their elements?	LectureDiscussion		
16	Robot cell design and control: types and its functions, considerations in work cell design	CO-5	Explain the considerations in work cell design?	LectureDiscussion	Case study – 2 (Week 16)	
17	Robot applications: material transfer, machine-loading/unloading, processing operations, assembly and inspections	CO-4 & CO-5	Write about the robot applications used for assembly and inspection?	LectureDiscussion	Seminar - 2 (Week 17)	

18	Mid-Test 2		Mid-Test 2 (Week 18)
19/20	END EXAM		END EXAM