SCHEME OF COURSE WORK

Course Details:

Course Title	: HIGH VOLTAGE DC TRANSMISSION							
Course Code	: 13EE2207 L P C : 4 0 3							
Program:	: Master of Technology.							
Specialization:	: Power Electronics & Drives							
Semester	er : I							
Prerequisites : Power Transmission system, Power Electronics and Switchgear & Protection								
Courses to which it is a prerequisite : Research								

Course Outcomes (COs):

1	Understand & Analyze the complete operation of HVDC Converter stations					
2	Understand the power flow control on HVDC Transmission system					
3	Understand the Operation of the controller for HVDC in worst and normal operations					
4	Analyze the AC / DC system interactions					
5	Analyze & Design protection Equipment for HVDC System					

Program Outcomes (POs):

A graduate of Electrical & Electronics Engineering will be able to

1	Be a professional workforce in the area of Static Power Electronics Converters and power electronic converter fed electrical drives and power quality issues.
2	Apply soft computing techniques for Power Electronic Systems and Electric Drives.
3	Understand large scale Power Electronic Converter Systems, Electric Drives and issues involved through modeling, analysis and simulation.
4	Apply present day techniques and tools to solve Power electronic and electric drives problems relevant to india and other countries.
5	By using state-of-the-art simulation tools such as PLEXIM, SABER, OPAL-RT Lab, dSPACE, MULTISIM, LABVIEW and other Tools.
6	Collaborate with industries on problems of relevance to them while formulating graduate dissertations.
7	Improvise soft skills to students through seminars and organization of technology workshops, writing research/project reports as a part of graduate education
8	Engage in life-long learning through professional bodies such as IEEE. Institute of Engineers (India) ,etc.
9	Imbibe social responsibilities and ethical practices prevailing in a society through professional institutions.

Course Outcome Versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO-1	S	S	S	S	S	M	S	S	M
CO-2	S	S	S	S	S	S	S	S	M
CO-3	S	S	M	S	S	S	S	S	M
CO-4	S	S	M	S	S	S	S	S	M
CO-5	S	S	M	S	S	S	S	S	M

S - Strongly correlated, *M* - *Moderately* correlated, *Blank* - *No correlation*

Assignment / Quiz / Sen	ninar / Case Study /	/ Mid-Test /	End Exam
-------------------------	----------------------	--------------	----------

Assessment Methods:

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS Course Outcomes Sample questions		Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule	
1	Evolution of HVDC Transmission. Comparison of HVAC and HVDC systems. Type of HVDC Transmission systems. Components of HVDC transmission systems.	of HVAC and HVDC systems. C Transmission systems. aspects Types of HVDC Systems		Lecture through Black Board & LCD Discussion	Seminar/Mid Test (Week 9-10)	
2	Analysis of simple rectifier circuits. Required features of rectification circuits for HVDC transmission	CO-1	Required Features of HVDC Converter	Lecture through Black Board & LCD Discussion	Seminar/Mid Test (Week 9-10)	
3	Analysis of HVDC converter. a. Different modes of converter operation. b. Output voltage waveforms and DC voltage in rectification.	CO-1	Analyze the Greatz Circuit Analyze the Rectifier Voltage and Valve Voltages	Lecture throughBlack Board & LCDProblem solving	Seminar/Mid Test (Week 9-10)	
4	Analysis of HVDC converter a. Output voltage waveforms and DC in inverter operation. b. Thyristor voltages. Equivalent Electrical Circuit of HVDC	CO-1	Analyze the 12 Pulse Converter With necessary Diagrams and equations derive the Equivalent Circuit of HVDC System	Seminar/Mid Test (Week 9-10)		
5	Smoothing reactor and DC Lines. Reactive power requirements. CO-2 & CO-3		What is the need for Requirement of Reactive Power Write about different types of Reactive Power sources	Lecture throughBlack Board & LCDDiscussion	Seminar/Mid Test (Week 9-10)	
6	Harmonic analysis. Filter design	CO-2 & CO-3	How harmonics are generated and what are the different Harmonics present in HVDC system and how are they eliminated	Lecture throughBlack Board & LCDDiscussion	Seminar/Mid Test (Week 9-10)	
7	HVDC system control features. Control Modes. Control Schemes. Control comparisons	CO-2 & CO-3	Explain the different control Strategies applied for HVDC system Explain and differentiate about the IPC and EPC modes of Firing	 Lecture through Black Board & LCD Discussion 	Seminar/Mid Test (Week 9-10)	
8	Need of Interaction between HV AC and DC System Strength	CO-4	What is the need of interaction between HV AC/DC Systems Write a short note non System Strength	 Lecture through Black Board & LCD Discussion 	Seminar/Mid Test (Week 9-10)	
9	Seminar by the Students					
10		Mid-Test	1		(Week 9) 22-11-2013 to 28-11-2013	
11	Interaction between HV AC and DC Voltage Interaction Power Flow Modulation	CO-4	What do infer by the word Voltage Interaction How power flow takes place in HVDC system What are the different Harmonic Instabilities in HVAC/DC interaction	 Lecture through Black Board & LCD Discussion 	Seminar/Mid Test (Week 17-18)	
12	Multi-terminal HVDC system. CO-2 & CO-3 what is the need for DC System what are the different MTDC systems Compare Series &		what is the need for Multi Terminal DC System what are the different Types of	 Lecture through Black Board & LCD Discussion 	Seminar/Mid Test (Week 17-18)	
13	HVDC system application in wind power generation	CO-2 & CO-3	How can we integrate HVDC System with Wind Generation	Lecture throughBlack Board & LCDDiscussion	Seminar/Mid Test (Week 17-18)	
14	Transient over voltages in HVDC systems Dc side over voltages Ac side over voltages.	CO-5	How can we protect HVDC System from Over Voltages	Lecture throughBlack Board & LCDDiscussion	Seminar/Mid Test (Week 17-18)	

15	Converter mal-operations.	CO-5	What are the different Converter	 Lecture through 	Seminar/Mid		
	Commutation failure.		Mal-operation in Detail	Black Board & LCD	Test		
	Starting and shutting down the converter bridge		Wht is the Procedure for Starting	Discussion	(Week 17-18)		
			and shutting down the converter				
			bridge				
16	Over Current Protection	CO-5	How can we protect HVDC System	 Lecture through 	Seminar/Mid		
	Converter protection.		from Over Currents.	Black Board & LCD	Test		
	Surge Arrestors		Write a short note on DC Breakers	Discussion	(Week 17-18)		
17	7 STUDENTS SEMINAR						
18	8 Mid-Test 2						
					23-01-2014		
19/20	PO END EXAM						
					2014		