edbytheFacultyofB.Tech/M.Tech/MCAIsemesteron orbefore11.10.2013to bhanucvk@gvpce.ac.inandyadavalliraghu@yahoo.com

SCHEMEOFCOURSEWORK

CourseDetails:

CourseTitle	HeatTransfer				
CourseCode	L T P C :30 03				
Program:	:B.Tech.				
Specialization:	:MechanicalEngineering				
Semester	:VI				
Prerequisites	:FluidMechanics, Thermodynamics				
Coursestowhich	Coursestowhichitisaprerequisite :Refrigeration & Air-Conditioning				

CourseOutcomes(COs):

At theendofthecoursethestudentwillbeableto

1	Define different modes of heat transfer, apply one-dimensional steady state heat
	conduction to different geometries.
2	Determine transient heat conduction using Heisler's charts, and explain velocity and
	thermal boundary layers in flows over flat plate and through circular pipe.
3	Calculate Nusselt numbers in forced and natural convection using empirical equations.
4	Draw pool boiling curve, describe laminar film condensation, use LMTD and NTU
	methods in heat exchanger design.
	Explain radiation laws and estimate radiation exchange between different surfaces and
	with radiation shields.

Program Outcomes (POs):

The undergraduate of mechanical engineering will be able to

U	
PO 1	Apply the knowledge of mathematics, science, engineering fundamentals to solve
	complex mechanical engineering problems
PO 2	Attain the capability to identify, formulate and analyse problems related to
	mechanical engineering
PO 3	Design solutions for mechanical system components and processes that meet the
	specified needs with appropriate consideration for public health and safety
PO 4	Perform analysis, conduct experiments and interpret data by using research
	methods such as design of experiments to synthesize the information and to
	provide valid conclusions
PO 5	Select and apply appropriate techniques from the available resources and
	current mechanical engineering and software tools
PO 6	Carry out their professional practice in mechanical engineering by appropriately
	considering and weighing the issues related to society
PO 7	Understand the impact of the professional engineering solutions on environmental
	safety and legal issues
PO 8	Transform into responsible citizens by resorting to professional ethics and norms
	of the engineering practice

ModelTemplateforSchemeofCourseWork

tobesubmittedbytheFacultyofB.Tech/M.Tech/MCAIsemesteron orbefore11.10.2013to bhanucyk@gypce.ac.inandyadayalliraghu@yahoo.com

	bnanucvk@gvpce.ac.inandyadavaiiiragnu@yanoo.com
PO 9	Function effectively in individual capacity as well as a member in diverse teams
	and in multidisciplinary streams
PO 10	Communicate fluently with the engineering community and society, and will be
	able to prepare reports and make presentations effectively
PO 11	Apply knowledge of the engineering and management principles to managing
	projects and finance in multidisciplinary environments
PO 12	Engage themselves in independent and life-long learning to continuing
	professional practice in their specialized areas of mechanical engineering

CourseOutcomeVersusProgramOutcomes:

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO-1	S	S						Μ			Μ	
CO-2	S	Μ	S			Μ		Μ			Μ	
CO-3	S	S										
CO-4	S	S									Μ	
CO-5	S	S	S					Μ			Μ	

S -Stronglycorrelated, M-Moderatelycorrelated, Blank-Nocorrelation

Teaching-LearningandEvaluation

Assessn	nent Methods:	Observat	ion / F	Record / Internal Exam / End Exam		
Week	Contents		Co urs e Ou tco me s	Sample Questions	Teaching Learning Strategy	Assessme nt Method & Schedule
1	transfer – H conduction– g equation in Ca	CTION: Modes of heat Fourier's law of heat general heat conduction artesian and cylindrical oordinates.	1	 Give the assumptions of Fourier law of conduction. Derive the general heat conduction equation in Cartesian coordinate system. 	Derivati ons and Lectures	Internal 1, Assignm ent 1
2	STATE HEAT state heat of Composite sla concentric convection syste	CNSIONAL STEADY CONDUCTION:Steady conduction in a slab - ab, coaxial cylinders and spheres conduction- ems - overall heat transfer t - electrical analogy	1	The wall of a furnace of 0.7 m ² area consists of a thin metal sheet covered inside with a 25 mm thick layer of insulation having a thermal conductivity of 0.25 W/m-°C. The heat transfer coefficients on each side of the door are 10 W/m ² -°C. The	Practice of Numeric als	Internal 1, Assignm ent 1

	tobesubmittedbytheFacultyofB.Tech/M	.Tech	MCAIsemesteron orbefore11.10.201	3to	
			lavalliraghu@yahoo.com		
			temperatures inside and outside		
			the refrigerator are 100°C and		
			20°C respectively. Determine (a)		
			the heat transfer rate through the		
			door, and (b) the temperature of		
			the metal sheet. The thermal		
			resistance of the metal sheet may		
			be neglected.		
3	critical radius of insulation - types of fins	1	1. Explain critical radius of	Practice	Internal
5	- rectangular fin with insulated tip $-$ fin	1	insulation.	of	1,
	effectiveness and fin efficiency -		2. Explain efficiency and	Numeric	Assignm
	•		effectiveness of a fin	als	ent 1
	application to error measurement of		3. An aluminum fin		
	temperature.		k=200 W/m-K, c =0.9kJ/kg-		
			K) of 3 mm thick and 75 mm		
			long protrudes from a wall		
			at 300°C.The ambient		
			temperature is 50°C with		
			heat transfer coefficient		
			of 10 W/m ² -K.		
			(a) Calculate effectiveness		
			and efficiency of the fin.		
			(b) If chrome steel fin of the		
			same size isused instead of		
			the aluminum fin, what		
			would be the effectiveness		
			and efficiency of the fin?		
			For chrome steel: k=40 /m-		
			K, c=0.46 kJ/kg-K.		
4	ONE DIMENSIONAL TRANSIENT	2	1. A large plate of mild steel 5 cm	Practise	Internal
	HEAT CONDUCTION: Lumped heat		thick and initially at 200°Cis	of	1,
	capacity analysis Biot and Fourier		suddenly exposed to the	Numeric	Assignm
	numbers – solution of transient conduction		convection environment of 70°C	als	ent 1
	systems for slabs, cylinders and spheres		with a heat transfer coefficient of 225 W/ 2 0		
	using Heisler's charts.		$525 \text{ W/m}^{2-\circ}\text{C}$. Calculate the		
			centre line and surface		
			temperatures 2 minutes after the plate is exposed to the convection		
			environment. How much energy		
			has been removed from the plate		
			per unit area in this time? k =		
			35 W/m ⁰ C, $\alpha = 8.7 \times 10^{-6}$ m ² /s, ρ		
			$= 8620 \text{ kg/m}^3, \text{ C} = 460 \text{ J/kg-K}$		
			2. Explain lumped heat capacity		
			analysis.		
5	DIMENSIONAL ANALYSIS:	2	1. Derive the relation for	Practise	Internal
	Buckingham-ðtheorem-		forced convection by	of	1, Assignm
	dimensionalanalysisappliedtoforcedconvection		buckingham∏ theorem	dimensio nal	Assignm ent 1
	andnaturalconvection–significance of		2. Explain the physical	relations	
	Reynold's, Prandtl and Nusselt numbers		significance of Prandtl number	by	
			and Reynolds number.	- 5	

tobesubmittedbytheFacultyofB.Tech/M.Tech/MCAIsemesteron orbefore11.10.2013to
bhanucvk@gvpce.ac.inandyadavalliraghu@yahoo.com

9	Internal 1		Calculate the following: (i) the average convection heat transfer coefficient, (ii) the rate of heat transferred to water from the tube wall, and (iii)the exit temperature of water.		
	over flat plates – Empirical correlations for Nusselt numbers for flow through pipes		with undisturbed velocity of 7.5 m/s. The surface of the plate is maintained at a uniform temperature of 120°C. i. calculate the heat transfer coefficient 0.8 m from the leading edge of the plate, ii. Also calculate the rate of heat transfer from one side of the plate to the air over the first 0.8 m length. Assume unit width of the plate. 2. Water flows through a tube of 2.54 cm diameter and 3 m length at a mean velocity of 2 cm/s. The water enters the tube at a temperature of 60°C. The tube wall temperature is maintained constant at 80°C.	als on emprical correlatio ns for forced convectio n	ent 1
6	FUNDAMENTALS OF CONVECTION: Velocity and thermal boundary layers in flow on a horizontal flat plate - velocity and thermal boundary layers in laminar flow through a circular pipe – hydrodynamic and thermal entry lengths - Reynolds and Colburn analogies FORCED CONVECTION: Empirical correlations for Nusselt numbers for flow	3	 Explain Hydrodynamic and thermal boundary layers in laminar flow over a horizontal flat plate. Using a linear velocity profile u/u_∞ = y/δ, for flow over a flat plate, obtain an expression for the boundary layer thickness as a functions of x. A thin flat plate has been placed longitudinally in a 	buckingh amΠ theorem Lecture Practise of Numeric	Internal 1, Assignm ent 1 Internal 1, Assignm

r			avalliraghu@yahoo.com		
10	NATURAL CONVECTION: Velocity	3	1. Buoyancy force and	Practise of	Internal 2,
	and thermal boundary layers in heat		Rayleigh number in	Numericals	Assignment
	transfer by naturalconvection from a		natural convection heat	on emprical	2
	vertical plate (derivations not included) –		transfer.	correlations	
	Boussinesq approximation –		2.A horizontal pipe of 6	for natural	
	empirical correlations for vertical plates		cm diameter is located	convection	
	and cylinders for laminar and turbulent		in a room, whose		
	natural convection		temperature of air is		
			20°C. The surface		
			temperature of the pipe		
			is 140°C. Calculate the		
			free convection heat loss		
			per meter length of the		
			pipe.		
			2. A flat electrical heater		
			of 0.4 m \times 0.4 m size is		
			placed vertically in still		
			air at 20° C. The heat		
			generated is 1200 W/m^2 .		
			Determine the value of		
			convective heat transfer		
			co-efficient and the		
			average plate		
			temperature.		
10	BOILING AND CONDENSATION:	4	1. Difference between	Lecture	Internal 2,
	Regimes of saturated pool boiling –		dropwise and filmwise		Assignment
	Dropwise and filmwise condensation-		condensation.		2
	Nusselt's analysis for laminar filmwise		2. Draw the saturated		
	condensation on a vertical plate		pool boiling curve for		
			water and explain about		
			various regimes in		
			boiling.		
11,12,	HEAT EXCHANGERS: Parallel and	4	1. Effectiveness of a heat	Practise of	Internal 2,
13	counter flow double pipe heat exchangers		exchanger.	Numericals	Assignment
	- overall heattransfer coefficient – fouling		2. In a cross flow heat		2
	factors - LMTD method of heat		exchanger hot exhaust		
	exchangeranalysis – effectiveness - NTU		gases (Cp = 1000 J/kgK)		
	method of heat exchanger analysis.		entering at300°C and		
			leaving at 100°C are		
			used to heat water,		
			flowing at 1 kg/s from		
			35° C to 125° C. The		
			overall heat transfer		
			coefficient based on the		
			gas side surface area		
			hasbeen found to be 100		
			W/m^2K . Using the NTU		
			method, estimate the		
			required gasside surface		

tobesubmittedbytheFacultyofB.Tech/M.Tech/MCAIsemesteron orbefore11.10.2013to bhanucvk@gvpce.ac.inandyadavalliraghu@yahoo.com

	bhanucvk@gvpce.ac.ina	und <u>yad</u>			
			2. What is the limitation of the LMTD method? How is NTU method superiorto correction factor LMTD method?		
14	THERMAL RADIATION:Emissive power – black body – Stefan-Boltzmann's law– Emissivity– Kirchhoff's law	5	1. Emissivity and Kirchhoff's law. 2. Estimate the rate of solar radiation on a plate normal to the sun rays. Assumethe sun to be a black body at a temperature of 5527 OC. The diameter of thesun is 1.39×106 km and its distance from the earth is 1.5×108 km.	Practise of Numericals	Internal 2, Assignment 2
15	radiation heat exchange between two blackisothermal surfaces – concept of radiation shape factor	5	1. Two equal discs of diameter 200 mm each are arranged in two parallel planes400 m apart. The temperature of the first disc is 500°C and that of the seconddisc is 300°C. Determine the radiating heat flux between them, if these are (i) black, and (ii) gray with emissivities 0.3 and 0.5 respectively.	Practise of Numericals	Internal 2, Assignment 2
16,17	heat exchangebetween two large gray planes, and concentric cylinders – exchangebetween a small gray body in a large enclosure – Radiation shields.	5	 Two large parallel planes having emissivities 0.3 and 0.5 are maintained at temperatures of 800K and 400K respectively. A radiation shield having an emissivity of 0.5 on both sides is placed between the two plates. Calculate: (a) the heat transfer rate per unit area if the shield were not present (b) the heat transfer rate per unit area with the shield present (c) the temperature of the shield. 	Practise of Numericals	Internal 2, Assignment 2

tobesubmittedbytheFacultyofB.Tech/M.Tech/MCAIsemesteron orbefore11.10.2013to bhanucvk@gvpce.ac.inandyadavalliraghu@yahoo.com

bnanucvk@gvpce.ac.ina	ndyadavalliraghu@yahoo.com
	2. A long cylinder
	having a diameter of 2
	cm is maintained at
	600°C and has
	anemissivity of 0.4.
	Surrounding the cylinder
	is another long, thin
	walled
	concentriccylinder
	having adiameter of 6
	cm and an emissivity of
	0.2 on both the inside
	andoutside surfaces.
	Theassembly is located
	in a large room having a
	temperature of 27°C.
	Calculate the net radiant
	energy lost by the 2 cm
	diameter cylinder
	permeter length. Also
	calculate the
	temperature of the 6 cm
	diameter cylinder.
18Internal 2	

tobesubmittedbytheFacultyofB.Tech/M.Tech/MCAIsemesteron orbefore11.10.2013to bhanucvk@gvpce.ac.inandyadavalliraghu@yahoo.com