SCHEME OF COURSE WORK

Course Details

Course Title	Geotechniques for Infrastructure						
Course Code	13CE 2113	L	Р	С	403		
Program:	M. Tech.	M. Tech.					
Specialization:	Infrastructure Engineering and Management						
Semester	П						
Prerequisites	Geotechnical Engineering and Foundation Engineering						
Courses to which it is a prerequisite None							

Course Outcomes (COs):

At the end of the course, the student will be able to:

1	Demonstrate an ability to understand the soil structure system under raft foundation
2	Estimate the lateral load capacity of piles and pile groups.
3	Explain suitability of various foundation systems for towers and chimneys.
4	Justify the various alternative foundation systems on weak soils.
5	Analyse sheet piles and bulk heads

Program Outcomes (POs): Post graduates will be able to:

1	Synthesize existing and new knowledge in various sub areas of structural engineering
2	Analyse complex engineering problems critically with adequate theoretical background for practical
	applications.
3	Evaluate a wide range of feasible and optimal solutions after considering safety and environmental factors.
4	Demonstrate the ability to pursue research by conducting experiments and extract the relevant information
	through literature surveys.
5	Use state-of-the-art of modern tools for interpreting the behaviour and modeling of complex engineering
	structures.
6	Attain the capability to work in multi disciplinary teams to achieve common goals.
7	Demonstrate the knowledge to perform the projects efficiently in multi disciplinary environment after
	consideration of economical and financial matters.
8	Communicate effectively on complex engineering activities to prepare reports and make presentations.
9	Engage in life-long learning independently to improve knowledge.
10	Understand the responsibility of carrying out professional practices ethically for sustainable development of society.
11	Examine critically and independently one's actions and take corrective measures by learning from

mistakes.	
-----------	--

Course Outcome versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	S	Μ	Μ									
CO-2	Μ	Μ	Μ	S	Μ			Μ				
CO-3	S	S	S						Μ			
CO-4	S	S	Μ	Μ						Μ		S
CO-5	S	Μ	Μ	Μ								

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods Assignment / Mid-Test / End Exam

Teaching-Learning and Evaluation

Week No.	TOPIC / CONTENTS	Course Outcomes	Sample questions	TEACHING- LEARNING STRATEGY	Assessme nt Method & Schedule
1	Foundations, their types and uses, choice of foundation systems, Purpose of selecting a raft foundation, types of rafts, use of rafts depending on loads and soil conditions, field examples	CO1	Write a short note on the computation of allowable bearing pressure for a mat foundation?	Lecture & problem solving	Test-1 Assignme nt
2	Lateral load test, Stiffness / rigidity of rafts, formulae, numerical problems	CO1	Describe the lateral pile load test as per IS: 2911 (Part 4) – 1985, with a neat sketch.	Lecture & problem solving	Test-1 Assignme nt
3	Allowable soil pressures for rafts in c=0 and c- ϕ soils, calculation of bearing capacity of raft foundation	CO1	Write a short note on the computation of allowable bearing pressure for a mat foundation?	Lecture & problem solving	Test-1
4	Lateral load carrying capacity of piles, p-y method and Evans & Duncan's methods.	CO2	Describe the p-y method?	Lecture & problem solving	Test-1 Assignme nt
5	Effect of pile group on lateral load carrying capacity.	CO2	Explain about the Ultimate Load Analysis of laterally loaded piles proposed by Broms, for unrestrained and restrained piles in sands	Lecture & problem solving	Test-1 Assignme nt

6	Behavior of pad and chimney foundations	CO3	Write a short note on the checks for safety against uplift and overturning of a chimney and pad foundation	Lecture & problem solving	Assignme nt
7	design of chimney and pad foundation	CO3	Write a short note on the checks for safety against uplift and overturning of a chimney and pad foundation	Lecture & problem solving	Test-1 Assignme nt
8	Numerical problems on chimney and pad foundation	CO3	Checks for lateral resistance, uprooting of the stub of a chimney and pad foundation	problem solving	Test-1 Assignme nt
9	TEST – I				
10	design of foundations for concrete towers and chimneys	CO3	Design a suitable foundation for a 20 ⁰ angle tower to be used in a double circuit 132kV transmission line. The foundation is located in a medium dense sand with $\Phi = 30^0$ and $\gamma =$ 17kN/m ³ . Depth of GWT is 5m below the GL.	Lecture & problem solving	Test-2 Assignme nt
11	Foundation techniques for construction on weak and compressible soils	CO4	Explain about the foundation techniques for construction on soft soils	Lecture & problem solving	Test-2 Assignme nt
12	Foundation techniques on expansive soils and estimation of heave and typical structural distress patterns.	CO4	Explain the CNS layer method	Lecture & problem solving	Assignme nt
13	Differences between a sheet pile and a bulkhead, types of sheet piles	CO5	What is the difference between a sheetpile, cofferdam and a bulkhead?	Lecture & problem solving	Test-2 Assignme nt

14	Determination of depth of	CO5	Analyse a cantilever	Lecture &	Test-2
	embedment of a sheet pile, general		sheet pile wall in	problem solving	Assignme
	principles of design of cantilever		cohesionless soil		nt
	sheetpiling in granular soils				
15	Design of cantilever sheetpiling in	CO5	Explain the stability	Lecture &	Test-2
	cohesive soils, free and fixed earth		analysis of an anchored	problem solving	Assignme
	support methods for design of		sheet pile using the fixed		nt
	anchored bulkheads		earth support method		
16	Numerical problems on design of	CO5	A cantilever sheet pile is	problem solving	Test-2
	anchored bulkheads		to be installed in		Assignme
			cohesionless soil of unit		nt
			weight= $2t/m^3$ and $\Phi' =$		
			30° . The height above the		
			dredge level is 6m and		
			water level above the		
			dredge level is 3m.		
			Estimate the depth of		
			penetration needed for		
			the sheet pile for		
			stability.		
17	Revision				
18	TEST - II				
	END EXAM				1
1		1			1