SCHEME OF COURSE WORK

Course Details:							
Course Title	: Failure Analysis and De	sign					
Course Code	:13ME2211		L	Р	С	:4 0 3	
Program:	: M.Tech.						
Specialization:	: CAAD						
Semester	: II						
Prerequisites	:						
Courses to which it is a prerequisite :Design of Machine Members							

Course Outcomes (COs):

The student will be able to

I ne stu	
CO1	Analyze the role of models in design
CO2	Analysis of the elastic plastic fracture mechanics
CO3	Select solutions for the prediction of fatigue life of finite and infinite problems
CO4	Explain significance of the creep and growth in fatigue
CO5	Explain the role of different wears in fracture mechanics

Program Outcomes (POs):

At the end of the program, the students in CAAD will be able to

PO 1	acquire knowledge in latest computer-aided design and analysis tools
PO 2	create 3D models of real-time components using latest CAD software
PO 3	acquire technical skills to formulate and solve engineering and industrial problems
PO 4	carry out analysis for the design of new products
PO 5	have proficiency to solve problems using modern engineering design tools
PO 6	have capability to work in multidisciplinary streams
PO 7	apply project and finance management skills to organise engineering projects
PO 8	prepare technical reports and present them effectively
PO 9	engage in lifelong learning
PO 10	realize professional and ethical responsibilities
PO 11	conduct surveys, analyse data, plan, design and implement new ideas into action

Course Outcome Versus Program Outcomes:

eourse outcome versus i rogrum outcomest											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO-1	S			Μ							
CO-2		S		S	S						
CO-3			S	М							
CO-4			S	М	S						
CO-5					S	Μ					

S - Strongly correlated, M - Moderately correlated, Blank - No correlation Assessment Methods

Assessment	Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam
Methods:	Assignment / Quiz / Semmai / Case Study / Wild-Test / End Exam

1. Teaching-Learning and Evaluation

We ek	Topic / Contents	Course Outco mes	Sample questions	Teaching -Learning Strategy	Assessme nt Method & Schedule
1	Introduction, role of failure prevention analysis in mechanical design, definition of design, some design objectives	CO-1	 What is the role of failure prevention in mechanical design? Explain the design objectives 	Lecture Demonstr ation	Assignm ent - I (Week 2 - 4)
2	Definition of failure mode, failure mode observed in practice, glossary of mechanical failure modes	CO-1	3.What are the various failure modes?4.What do you mean by linear elastic fracture mechanics?		
3	Introduction to fracture mechanics and linear elastic fracture mechanics	CO-1			
4	Use of fracture mechanics design, elastic-plastic fracture mechanics	CO-1			
5	Introduction, historical remarks, nature of fatigue, fatigue loading, laboratory fatigue testing, S-N-P curves	CO-2	 What are the effects of fatigue loading? Explain the effect of S-N-P curves using the factors in 	Lecture Problem solving	Seminar - I (Week 6 - 8)
6	Factors that effect S-N-P curves using the factors in design, influence of nonzero mean stress multi axial fatigue stresses using multi axial fatigue failure theories	CO-2	design.3. What is the influence of non zero mean stress using multi axial fatigue failure theories?4. What are the cumulative damage theories?		
7	Linear damage theory, cumulative damage theories, life prediction based on local stress-strain and fracture mechanics concepts, service loading simulation and full scale fatigue testing, damage tolerance and fracture control	CO-2			
8	Introduction, strain cycling concept, strain life curve and low cycle fatigue relationships	CO-3			
9	Mid-Test 1	CO-1, CO-2			Mid-Test 1
					(Week 9)

10	I G C	00.2		T (· ·]
10	Influence of nonzero mean	CO-3	1.Explain the concept of strain	Lecture	Assignm
	strain and non zero mean		cycling.	Discussio	ent - II
	stress		2. What is the influence of non	n	(Wee12 -
11	Cumulative damage role in	CO-3	zero mean strain and nonzero		14)
	low cycle fatigue		mean stress in the fracture		
12	Introduction, prediction of	CO-4	mechanics?		
	long term creep behaviour				
13	Theories for predicting creep	CO-4	1.Explain the theories for	Lecture	Seminar -
	behavior, creep under uniaxial		predicting creep behaviour	Discussio	II
	state of stress and multi axial		2. What is the creep behavior	n	(Week 16
	state of stress		under uniaxial and multi axial	Problem	- 18)
14	Cumulative creep concept,	CO-4	state of stresses?	solving	,
	combined creep and fatigue		3.Explain the concept of	U	
			combined creep and fatigue.		
15	Introduction, variables of	CO-5	1.Explain the role of different	Lecture	
_	importance in the fretting		wears in fracture mechanics.	Problem	
	process, fretting fatigue		2.How do you prevent the	solving	
16	Fretting wear, fretting	CO-5	fretting damage?	2000-00	
10	corrosion, minimizing or	000	3.What do you mean by		
	preventing fretting damage		surface fatigue?		
17	Introduction, wear –adhesive,	CO-5			
17	abraisive, corrosion, surface	005			
	fatigue, deformation, fretting				
	impact, empirical model of				
	zero linear, corrosion, stress				
	corrosion cracking				
18	Mid-Test 2	CO-3,			Mid-Test
10	WING-1 CSt 2	-			$\frac{1}{2}$
		CO-4,			2 (Week
		CO-5			
10/		A 11			18)
19/	END EXAM	All			
20		Cos			