SCHEME OF COURSE WORK

Course Details:

Course Title	: Finite Element Method with Structural Application						
Course Code	: 13CE2212	L	Р	С	: 4 0 3		
Program:	: M. Tech.						
Specialization:	: Structural Engineering						
Semester	:П						
Prerequisites	: Structural Analysis. Stiffness method						
Courses to which it is a prerequisite : None							

Course Outcomes (COs):

At the end of the course, the student will be able to:

1	build finite element model based on standard software
2	understand the energy principles and obtain stiffness matrices
3	Write shape functions of FEM elements and its application.
4	use the concepts of isoparametric elements in FEM.
5	analyse beams, 2D & 3D structural systems using FEM.

Program Outcomes (POs):

Post graduates will be able to:

1	Synthesize existing and new knowledge in various sub areas of structural engineering
2	Analyse complex engineering problems critically with adequate theoretical background for practical applications.
3	Evaluate a wide range of feasible and optimal solutions after considering safety and environmental factors.
4	Demonstrate the ability to pursue research by conducting experiments and extract the relevant information through literature surveys.
5	Use state –of- the- art of modern tools for interpreting the behavior and modeling of complex engineering structures.
6	Attain the capability to work in multi disciplinary teams to achieve common goals.
7	Demonstrate the knowledge to perform the projects efficiently in multi disciplinary environments after consideration of economical and financial matters.
8	Communicate effectively on complex engineering activities to prepare reports and make presentations.
9	Engage in life-long learning independently to improve knowledge.
10	Understand the responsibility of carrying out professional practices ethically for sustainable development of society.
11	Examine critically and independently one's actions and take corrective measures by learning from mistakes.

Course Outcome versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO-1	S	S									
CO-2	S	S	М								
CO-3	S	S			S						Μ
CO-4	S	S									М
CO-5	S	S		S							М

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods:

Assignment / Seminar / Mid-Test / End Exam

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course	Sample questions	Teaching-	Assessment
No.		Outco		Learning	Method &
		mes		Strategy	Schedule
1	Introduction to Finite element Methods,	CO-1	What is the concept of FEM.?	Lecture/	
	merits and demerits		What are FEM based softwares	Discussion	
		00.1	available in Civil Engineering?		Assignment
	Various elements in FEM and	CO-1	Write the educate se and	Problem solving	
	applications of FEM		disadvantages of EEM		
2	Steps involved in FFM	CO-1	What do you mean idealization		
2	Steps involved in FEIV	00-1	of a physical problem?	- Lecture	
			or a physical problem.		
	Descritization of physical problem	CO-1	What are various considerations		
			while descritizing a structure?		
3	Convergence and compatibility	CO-1	What is the significance of	Lecture	
	criterion		concergence criteria in FEM?		Assignment
		CO 2	Explain the significance of	Problem solving	
	function	0-2	Pascal triangle		
4	Shape function for bar element in	CO-2	Define shape functions and its	• Lecture	Assignment
•	natural and Cartesian coordinates	002	characteristics.	Lootare	, song innerit
	Shape function for CST element in		What is the relationship		
	natural and Cartesian coordinates		between natural coordinates	- Durit 1	
		CO-2	and Cartesian coordinates?	^a Problem solving	
5	Derivation of Stiffness matrix and load	CO-2	What is the significance of	Lecture	
C C	matrix using potential energy principle	001	potential energy?		
	Obtaining stiffness matrix for Bar		Write stiifness matrix for a bar		
	element, CST element,	CO-2	element	Lecture	
6	Obtaining load matrix for various	CO-2	Differential between CST and	Lecture	
-	loading conditions for bar, CST		LST elements.		
	elements				
			Write steps for assembling of		
	Procedure to assemble stiffness and	CO-2	stiffness matrix	Lecture	
	load matrices, solution for stresses and				
	suams in the element				

7	Introduction to truss element and Derivation of stiffness matrix for truss element Derivation of shape function for 2- noded beam element	CO-3 CO-3	Write the strain displacement matrix for truss element Write shape functions for beam element in natural coordinates.	LectureProblem solving	Assignment
8	Derivation of stiffness matrix for 2- noded beam element in local and Cartesian coordinates	CO-3	Define beam element?	Lecture	
9	MID TEST - I				
10	Derivation of stiffness matrix for CST element and four noded plane stress and plain strain conditions	CO-3	Derive shape function for CST element and plane strain and plane stress conditions	• Lecture	
11	Solving CST element problems for trains and stresses subjected to various loading conditions	CO-3	What do you mean by equivalent nodal load matrix due to various external loading?	Problem solving	Assignment
12	Introduction to Isoparametric elements and formulations	CO-4	What is the concept of isoparametric element and its advantages?	• Lecture	
13	Shape functions of Isoparametric elements and derivation of Jacobian matrix	CO-4	What is the stiffness matrix of isoparametric elements?	 Lecture Problem solving 	
14	Solving problems on Jacobian problems and transformation of axes.	CO-4	What is the significance of Jacobian matrix	Problem solving	
15	Analysis of plane truss due to initial strain	CO-5 CO-5	Write consistent load matrix for initial strain. Write stiffness matrix for truss	 Problem solving Problem solving 	
	Analysis of plane truss due to raise in temperature		element	Droblom colving	
	Formulation of 3-D truss in FEM	CO-5	Write stiffness matrix for truss for 3DOF at each node.	Froblem solving	
16	Solving simple beams in FEM.	CO-5	Write stiffness matrix for beam element for 2DOF at each node.	Problem solving	Assignment
17	Solving continuous beams using FEM	CO-5	Write the load matrix for pont load.	Problem solving	Assignment
	Formulation of FEM problem for portal frame	CO-5	Write stiffness matrix for beam element for 3 DOF at each node.	Problem solving	
18	MID TEST - II				
	END EXAM				