SCHEME OF COURSE WORK

Course Title	FINITE ELEMENT ANALYSIS LAB		
Course Code	19ME2104	L P C	0 3 1.5
Program:	M.Tech.		
Specialization:	CAD/CAM		
Semester	Ι		

Course Outcomes (COs):

At the end of the course, the student will be able to

1 Generate part models of different mechanical components using modeling packages.

2	Analyze stresses using 1-D and 2-D elements
3	Analyze stresses using 3-D elements.
4	Calculate natural frequencies and mode shapes using dynamic analysis.
5	Solve optimization problems using FEA packages.

Program Outcomes (POs)

At the end of the program, the students in CAD/CAM will be able to

- 1. acquire fundamentals in the areas of computer aided design and manufacturing
- 2. apply innovative skills and analyze computer aided design and manufacturing problems critically
- 3. identify, formulate and solve design and manufacturing problems
- 4. carry out research related to design and manufacturing
- 5. use existing and recent CAD/CAM software
- 6. collaborate with educational institutions, industry and R&D organizations inmultidisciplinary teams
- 7. apply project and finance management principles in engineering projects
- 8. prepare technical reports and communicate effectively
- 9. engage in independent and life-long learning and pursue professional practice in their specialized areas of CAD/CAM
- $10. \ {\rm exhibit} \ {\rm accountability} \ {\rm to} \ {\rm society} \ {\rm while} \ {\rm adhering} \ {\rm to} \ {\rm ethical} \ {\rm practices}$
- 11. act independently and take corrective measures where necessary

Course Outcome versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO-1	S	М		М	S				Μ		
CO-2	S	М		М	S				Μ		
CO-3	S	М		Μ	S				Μ		
CO-4	S	М		М	S				М		
CO-5	S	Μ		М	S				М		

- S Strongly correlated, M Moderately correlated, Blank No Correlation
- S Strongly correlated, M Moderately correlated, Blank No correlation

Teaching-Learning and Evaluation

WEEK	TOPIC / CONTENTS	COU RSE OUT COM ES		SAMPLE VIVA QUESTIONS	TEACHI NG- LEARNI NG STRATE GY	ASSESSME NT METHOD & SCHEDUL E
1	Modeling of machine components-I	CO1	1. 2. 3	How to create planar entities in CATIA What is extrude operation? What is sween operation?	Hands on training on CATIA to create	
2	Modeling of machine components-II	CO1	4.	How to create assembled views in CATIA	solid models and assemblies	
3	Assembly of machine components-I	CO1	_			
4	Assembly of machine components-II	CO1	=			Day to day
5	Static analysis with link elements	CO2	1.	What are preprocessing, solution and post processing modules in a FEA software	Hands on training on ANSYS 19.2	experiment s, Record
6	Static analysis with beam elements	CO2	- 2. 3. 4.	What is the interpolation used in CST? How to apply a UDL on beam in ANSVS software?	to use LINK, BEAM, CST and QUAD	ς, Γ
7	Static analysis with triangular elements	CO2		What is the difference between link element and beam element	ANSYS element library	
8	Backlog Experiment/ Revision/ Practice	CO1 and CO2				
9	Mid-Test 1	CO- 1 and CO- 2				Internal Exam-1, Viva voce

10	Static analysis with	000	1. Ares the axi-symmetric	Hands on	
	shell elements	CO3	 elements 2-D or 3-D? What is the difference between static analysis and transient analysis? Differentiate between brick 	training on usage of axi- symmetric,	
11	Static analysis with solid elements	CO3	 3. Differentiate between brick elements and tetrahedron elements 4. How thickness is specified for a shell element? 	D elements on ANSYS 19.2 Hands on training on	
12	Static analysis with Axi-symmetric triangular elements	CO3		static and transient thermal analyses on	Day to day
13	Steady state and Transient thermal analysis of a cylinder	CO3		ANS YS 19.2	Day to day experiments, Record
14	Modal analysis of shaft	CO4	 What is modal analysis? What is harmonic analysis? How extract vibration modes 	Hands on training on	
15	Harmonic analysis of plate	CO4	3. How extract vibration modes	to perform modal and harmonic analyses of stepped bars and beams	
16	Size optimization of beam	CO5	1. What is the need of optimization?	Hands on training on ANSYS Workbench to perform shape optimization of a beam	
17	Backlog Experiment/ Revision/ Practice	CO3, CO4 and CO5			

18	Mid-Test 2	CO-3,	Internal
		CO-	Exam-2,
		4	Viva voce
		and	
		CO-	
		5	
19/20	END EXAM	All	Exercises and
		Co	Viva voce
		S	