SCHEME OF COURSE WORK

Course Details:

Course Title	FINITE ELEMENT ANALYSIS	LTPC	3003
Course Code	19ME2102		
Program	M. Tech		
Specialization	CAD/CAM		
Semester	1		
Prerequisites	Mechanics of Solids at UG level		
Courses to			
which it is a			
prerequisite			

Course Outcomes (COs):

At the end of the course a student will be able to

СО	Course Outcomes	Cognitive Level
CO1	Apply Rayleigh-Ritz, Galerkin methods to solve engineering problems and analyze linear 1D problems like bars and trusses.	Remember , Understand , Apply
CO2	Analyze 2D structural problems using CST element and axi-symmetric problems with triangular elements.	Understand , Apply, Analyze
CO3	Explain shape functions for 4 and 8 noded quadrilaterals, 6 noded triangle elements and apply numerical integration to solve; 1D and 2D; stiffness integration.	Remember , Understand , Apply
CO4	Solve linear 2D structural beams and frames problems; 1D heat conduction and convection heat transfer problems	Remember , Understand , Apply
CO5	Calculate the Eigenvalues and Eigenvectors for stepped bar and beam, explain geometric and material nonlinearity	Remember , Understand , Apply

Program Outcomes (POs):

At the end of the program, the students in CAD/CAM will be able to

- 1. acquire fundamentals in the areas of computer aided design and manufacturing
- 2. apply innovative skills and analyze computer aided design and manufacturing problems critically
- 3. identify, formulate and solve design and manufacturing problems
- 4. carry out research related to design and manufacturing
- 5. use existing and recent CAD/CAM software
- 6. collaborate with educational institutions, industry and R&D organizations in multidisciplinary teams
- 7. apply project and finance management principles in engineering projects
- 8. prepare technical reports and communicate effectively
- 9. engage in independent and life-long learning and pursue professional practice in

their specialized areas of CAD/CAM

- 10. exhibit accountability to society while adhering to ethical practices
- 11. act independently and take corrective measures where necessary

COs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	S	S			М	М			М		
CO2	S	S			М	М			М		
CO3	S	S			М	М			М		
CO4	S	S			М	М			М		
CO5	S	S			Μ	М			Μ		

Course Outcome Versus Program Outcomes:

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment	Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam
Methods:	

Teaching-Learning and Evaluation

Week	TOPIC /	Course	Sample	TEACHING	Assessment				
	CONTENTS	Outcom	questions	LEARNING	Method				
		es		STRATEGY	&Schedule				
Fundamentals of machining									
1	Introduction, comparison of FEM with other methods, Galerkin Method and Rayleigh- Ritz method	CO1	Explain Galerkin method with a suitable example	Lecture Discussion Problem solving	Assignment-I (Week 8) Mid-I (Week 9)				
2	shape functions and characteristics, properties of stiffness matrix, treatment of boundary conditions	CO1	Explain penalty approach of handling boundary conditions	Lecture Discussion	Assignment-I (Week 8) Mid-I (Week 9)				
3	Convergence: requirements for convergence, h refinement and p- refinement, basic equations of elasticity, strain displacement relations	CO1	Discuss h- refinement and p-refinement to enhance convergence	Lecture Discussion	Assignment-I (Week 8) Mid-I (Week 9)				

4	1-D structural	CO1	Problems on 1-	Lecture	Assignment-I
	problems axial bar element stiffness		D stepped bars	Discussion	(VVeek 8) Mid-I
	matrix and load		to compute	solving	(Week 9)
	vector,		stresses and	5	(WOOK 0)
			reactions		
5	Plane trusses,	C01	Problems in	Lecture	Assignment-I
	stiffness matrix,		plane trusses to	Problem	Mid-I
	assembly of global		displacements.	solving	(Week 9)
	stiffness matrix and		stresses and		
	calculations		reactions		
6	Two-dimensional	CO2	Derive the	Lecture	Assignment-I
	problems using CST:		strain-	Discussion	(Week 8)
	isoparametric		displacement	solving	WID-I
	representation, PE		CST element	conng	(WEEK 3)
	approach, element				
	terms, stress				
	calculations				
7	Axisymmetric	CO2	Derive the	Lecture	Assignment-I
	Modelling using		stiffness matrix	Problem	(Week o) Mid-l
	triangular elements,		symmetric	solving	(Week 9)
	body force terms,		triangle	0	` ,
	surface traction,		5		
	cylinder subjected to				
	internal pressure,				
8	Infinite cylinder.	CO3	Derive the	Lecture	Assignment-I
Ŭ	formulation: 4-noded		strain-	Discussion	(Week 8)
	quadrilateral and its		displacement	Problem	Mid-I
	shape functions,		matrix of a 4-	solving	(Week 9)
	matrix, element		noded		
	force vectors		element		
9			MID-I		1
10	nine - nodod	<u> </u>	Derive the shape		Assignment
	quadrilateral, eight-	003	functions of 9-	Discussion	(Week 17)
	noded quadrilateral,		noded		Mid-I
	six-node triangle, sub		quadrilateral		(Week 18)
	parametric, super				
	elements,				
	serendipity				
	elements		<u> </u>		
11	Numerical	CO3		Lecture	Assignment-II
1	Integration 1D and		Droblome on	Discussion	(M)

11	Numerical	CO3		Lecture	Assignment-II	
	Integration-1D and		Problems on	Discussion	(Week 17)	
	2D integrations,		evaluation of 1-	Problem	Mid-II	
	stiffness		D and 2-D	solving	(Week 18)	
	integration, stress		integrals by	_	、 , ,	
	calculations		Gaussian			

			numerical integration		
12	Beams and frames: finite element formulation, load vector, boundary conditions, shear force and bending moment, and plane frames	CO4	Problems on 2-D beams and plane frames to compute displacements	Lecture Discussion Problem solving	Assignment-II (Week 17) Mid-II (Week 18)
13	Scalar field problems: steady state heat transfer-one- dimensional heat conduction problems, onedimensional heat transfer in thin fins.	CO4	Solution to on 1-D heat transfer problems by FEM	Lecture Discussion Problem solving	Assignment-II (Week 17) Mid-II (Week 18)
14	formulation-solid body with distributed mass, element mass matrices	CO5	Derivation of element mass matrices for 1-D bar and beam elements	Lecture Discussion	Assignment-II (Week 17) Mid-II (Week 18)
15	evaluation of Eigenvalues and Eigenvectors for a stepped bar and a beam	CO5	Problems of 1-D stepped bars and beams to compute natural frequencies and vibration modes	Lecture Discussion Problem solving	Assignment-II (Week 17) Mid-II (Week 18)
16	Introduction to nonlinear problems, geometric nonlinearity, material nonlinearity	CO5	Discuss how nonlinearities are handled with FEM	Lecture Discussion	Assignment-II (Week 17) Mid-II (Week 18)

17	nonlinear dynamic problems, analytical problems.	CO5	Discuss the FE formulation of nonlinear dynamic problems	Lecture Discussion	Assignment-II (Week 17) Mid-II (Week 18)			
18	Mid-II							
19	End Semester							